ffsim.contract¶
Functions for contracting tensors and constructing linear operators.
- ffsim.contract.contract_diag_coulomb(vec, mat, norb, nelec, *, z_representation=False)[source]¶
Contract a diagonal Coulomb operator with a vector.
A diagonal Coulomb operator has the form
\[\sum_{i, j, \sigma, \tau} Z^{(\sigma \tau)}_{ij} n_{\sigma, i} n_{\tau, j} / 2\]where \(n_{\sigma, i}\) denotes the number operator on orbital \(i\) with spin \(\sigma\) and \(Z^{(\sigma \tau)}\) is a real-valued matrix
- Parameters:
vec (
ndarray
) – The state vector to be transformed.mat (
ndarray
|tuple
[ndarray
|None
,ndarray
|None
,ndarray
|None
]) – The diagonal Coulomb matrix \(Z\). You can pass either a single Numpy array specifying the coefficients to use for all spin interactions, or you can pass a tuple of three Numpy arrays specifying independent coefficients for alpha-alpha, alpha-beta, and beta-beta interactions (in that order). If passing a tuple, you can set a tuple element toNone
to indicate the absence of interactions of that type.norb (
int
) – The number of spatial orbitals.nelec (
tuple
[int
,int
]) – The number of alpha and beta electrons.z_representation (
bool
) – Whether the input matrices are in the “Z” representation.
- Return type:
ndarray
- Returns:
The result of applying the diagonal Coulomb operator on the input state vector.
- ffsim.contract.contract_num_op_sum(vec, coeffs, norb, nelec)[source]¶
Contract a linear combination of number operators with a vector.
A linear combination of number operators has the form
\[\sum_{\sigma, i} \lambda_i n_{\sigma, i}\]where \(n_{\sigma, i}\) denotes the number operator on orbital \(i\) with spin \(\sigma\) and the \(\lambda_i\) are real numbers.
- Parameters:
vec (
ndarray
) – The state vector to be transformed.coeffs (
ndarray
) – The coefficients of the linear combination.norb (
int
) – The number of spatial orbitals.nelec (
tuple
[int
,int
]) – The number of alpha and beta electrons.
- Returns:
The result of applying the linear combination of number operators on the input state vector.
- ffsim.contract.contract_one_body(vec, mat, norb, nelec)[source]¶
Contract a one-body tensor with a vector.
A one-body tensor has the form
\[\sum_{ij} M_{ij} a^\dagger_i a_j\]where \(M\) is a complex-valued matrix.
- Parameters:
mat (
ndarray
) – The one-body tensor.norb (
int
) – The number of spatial orbitals.nelec (
tuple
[int
,int
]) – The number of alpha and beta electrons.
- Return type:
ndarray
- Returns:
A LinearOperator that implements the action of the one-body tensor.
- ffsim.contract.diag_coulomb_linop(mat, norb, nelec, *, orbital_rotation=None, z_representation=False)[source]¶
Convert a (rotated) diagonal Coulomb matrix to a linear operator.
A rotated diagonal Coulomb operator has the form
\[\mathcal{U} (\sum_{i, j, \sigma, \tau} Z^{(\sigma \tau)}_{ij} n_{\sigma, i} n_{\tau, j} / 2) \mathcal{U}^\dagger\]where \(n_{\sigma, i}\) denotes the number operator on orbital \(i\) with spin \(\sigma\), \(Z^{(\sigma \tau)}\) is a real-valued matrix, and \(\mathcal{U}\) is an optional orbital rotation.
- Parameters:
mat (
ndarray
|tuple
[ndarray
|None
,ndarray
|None
,ndarray
|None
]) – The diagonal Coulomb matrix \(Z\). You can pass either a single Numpy array specifying the coefficients to use for all spin interactions, or you can pass a tuple of three Numpy arrays specifying independent coefficients for alpha-alpha, alpha-beta, and beta-beta interactions (in that order). If passing a tuple, you can set a tuple element toNone
to indicate the absence of interactions of that type.norb (
int
) – The number of spatial orbitals.nelec (
tuple
[int
,int
]) – The number of alpha and beta electrons.orbital_rotation (
ndarray
|tuple
[ndarray
|None
,ndarray
|None
] |None
) – The optional orbital rotation. You can pass either a single Numpy array specifying the orbital rotation to apply to both spin sectors, or you can pass a pair of Numpy arrays specifying independent orbital rotations for spin alpha and spin beta. If passing a pair, you can useNone
for one of the values in the pair to indicate that no operation should be applied to that spin sector.mat_alpha_beta – A matrix of coefficients to use for interactions between orbitals with differing spin.
z_representation (
bool
) – Whether the input matrices are in the “Z” representation.
- Return type:
LinearOperator
- Returns:
A LinearOperator that implements the action of the diagonal Coulomb operator.
- ffsim.contract.num_op_sum_linop(coeffs, norb, nelec, *, orbital_rotation=None)[source]¶
Convert a (rotated) linear combination of number operators to a linear operator.
A rotated linear combination of number operators has the form
\[\mathcal{U} (\sum_{\sigma, i} \lambda_i n_{\sigma, i}) \mathcal{U}^\dagger\]where \(n_{\sigma, i}\) denotes the number operator on orbital \(i\) with spin \(\sigma\), the \(\lambda_i\) are real numbers, and \(\mathcal{U}\) is an optional orbital rotation.
- Parameters:
coeffs (
ndarray
) – The coefficients of the linear combination.norb (
int
) – The number of spatial orbitals.nelec (
tuple
[int
,int
]) – The number of alpha and beta electrons.orbital_rotation (
ndarray
|None
) – A unitary matrix describing the optional orbital rotation.
- Return type:
LinearOperator
- Returns:
A LinearOperator that implements the action of the linear combination of number operators.
- ffsim.contract.one_body_linop(mat, norb, nelec)[source]¶
Convert a one-body tensor to a linear operator.
A one-body tensor has the form
\[\sum_{ij} M_{ij} a^\dagger_i a_j\]where \(M\) is a complex-valued matrix.
- Parameters:
mat (
ndarray
) – The one-body tensor.norb (
int
) – The number of spatial orbitals.nelec (
tuple
[int
,int
]) – The number of alpha and beta electrons.
- Return type:
LinearOperator
- Returns:
A LinearOperator that implements the action of the one-body tensor.