Source code for ffsim.testing.testing

# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Testing utilities."""

from __future__ import annotations

import itertools
from collections.abc import Iterable, Iterator
from typing import cast, overload

import numpy as np

from ffsim.linalg import match_global_phase
from ffsim.spin import Spin


[docs] def generate_norb_nelec_spin( norb_range: Iterable[int], ) -> Iterator[tuple[int, tuple[int, int], Spin]]: """Generate (`norb`, `nelec`, `spin`) tuples for testing. Given a range of choices for `norb`, generates all possible (`norb`, `nelec`, `spin`) triplets. """ for norb in norb_range: for nelec in itertools.product(range(norb + 1), repeat=2): for spin in Spin.__members__.values(): yield norb, cast(tuple[int, int], nelec), spin
[docs] def generate_norb_nelec( norb_range: Iterable[int], ) -> Iterator[tuple[int, tuple[int, int]]]: """Generate (`norb`, `nelec`) tuples for testing. Given a range of choices for `norb`, generates all possible (`norb`, `nelec`) pairs. """ for norb in norb_range: for nelec in itertools.product(range(norb + 1), repeat=2): yield norb, cast(tuple[int, int], nelec)
[docs] def generate_norb_nocc( norb_range: Iterable[int], ) -> Iterator[tuple[int, int]]: """Generate (`norb`, `nocc`) tuples for testing. Given a range of choices for `norb`, generates all possible (`norb`, `nocc`) pairs. `nocc` refers to the occupation of a single spin species, so it ranges from 0 to `norb`. """ for norb in norb_range: for nocc in range(norb + 1): yield norb, nocc
[docs] def generate_norb_spin(norb_range: Iterable[int]) -> Iterator[tuple[int, Spin]]: """Generate (`norb`, `spin`) tuples for testing. Given a range of choices for `norb`, generates all possible (`norb`, `spin`) pairs. """ for norb in norb_range: for spin in Spin.__members__.values(): yield norb, spin
[docs] def random_nelec(norb: int, *, seed=None) -> tuple[int, int]: """Return a random pair of (n_alpha, n_beta) particle numbers. Args: norb: The number of spatial orbitals. seed: A seed to initialize the pseudorandom number generator. Should be a valid input to ``np.random.default_rng``. Returns: The sampled pair of (n_alpha, n_beta) particle numbers. """ rng = np.random.default_rng(seed) n_alpha, n_beta = rng.integers(norb + 1, size=2) return (n_alpha, n_beta)
@overload def random_occupied_orbitals(norb: int, nelec: int, *, seed=None) -> list[int]: ... @overload def random_occupied_orbitals( norb: int, nelec: tuple[int, int], *, seed=None ) -> tuple[list[int], list[int]]: ...
[docs] def random_occupied_orbitals( norb: int, nelec: int | tuple[int, int], *, seed=None ) -> list[int] | tuple[list[int], list[int]]: """Return a random pair of occupied orbitals lists. Args: norb: The number of spatial orbitals. nelec: Either a single integer representing the number of fermions for a spinless system, or a pair of integers storing the numbers of spin alpha and spin beta fermions. seed: A seed to initialize the pseudorandom number generator. Should be a valid input to ``np.random.default_rng``. Returns: The sampled pair of (occ_a, occ_b) occupied orbitals lists. """ rng = np.random.default_rng(seed) if isinstance(nelec, int): return [int(x) for x in rng.choice(norb, nelec, replace=False)] n_alpha, n_beta = nelec occ_a = [int(x) for x in rng.choice(norb, n_alpha, replace=False)] occ_b = [int(x) for x in rng.choice(norb, n_beta, replace=False)] return (occ_a, occ_b)
[docs] def assert_allclose_up_to_global_phase( actual: np.ndarray, desired: np.ndarray, rtol: float = 1e-7, atol: float = 0, equal_nan: bool = True, err_msg: str = "", verbose: bool = True, ): """Check if a == b * exp(i phi) for some real number phi. Args: actual: A Numpy array. desired: Another Numpy array. rtol: Relative tolerance. atol: Absolute tolerance. equal_nan: If True, NaNs will compare equal. err_msg: The error message to be printed in case of failure. verbose: If True, the conflicting values are appended to the error message. Raises: AssertionError: If a and b are not equal up to global phase, up to the specified precision. """ actual, desired = match_global_phase(actual, desired) np.testing.assert_allclose( actual, desired, rtol=rtol, atol=atol, equal_nan=equal_nan, err_msg=err_msg, verbose=verbose, )