Source code for ffsim.states.bitstring

# (C) Copyright IBM 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Utilities for handling bitstrings."""

from __future__ import annotations

import math
from collections.abc import Sequence
from enum import Enum, auto
from typing import cast

import numpy as np
from pyscf.fci import cistring


[docs] class BitstringType(Enum): """Enumeration for indicating the data type of bitstrings. String: ["0101", "0110"] Integer: [5, 6] Bit array: [[False, True, False, True], [False, True, True, False]] """ STRING = auto() """String.""" INT = auto() """Integer.""" BIT_ARRAY = auto() """Bit array."""
def convert_bitstring_type( strings: Sequence[str] | Sequence[int] | np.ndarray, input_type: BitstringType, output_type: BitstringType, length: int, ): """Convert bitstrings from one type to another. Args: strings: The bitstrings. input_type: The bitstring type of the input. output_type: The desired bitstring type of the output. length: The length of a bitstring. Returns: The converted bitstrings. """ if input_type is output_type: return strings if input_type is BitstringType.STRING: strings = cast(list[str], strings) if output_type is BitstringType.INT: return [int(s, base=2) for s in strings] if output_type is BitstringType.BIT_ARRAY: if not strings: return np.empty((0, length), dtype=bool) return np.array([[b == "1" for b in s] for s in strings]) if input_type is BitstringType.INT: strings = cast(Sequence[int], strings) if output_type is BitstringType.STRING: return [f"{string:0{length}b}" for string in strings] if output_type is BitstringType.BIT_ARRAY: if not strings: return np.empty((0, length), dtype=bool) return np.array( [[s >> i & 1 for i in range(length - 1, -1, -1)] for s in strings], dtype=bool, ) if input_type is BitstringType.BIT_ARRAY: strings = cast(np.ndarray, strings) if output_type is BitstringType.STRING: return ["".join("1" if bit else "0" for bit in bits) for bits in strings] if output_type is BitstringType.INT: return [ sum(bit * (1 << i) for i, bit in enumerate(bits[::-1])) for bits in strings ] def restrict_bitstrings( strings: list[str] | list[int] | np.ndarray, indices: Sequence[int], bitstring_type: BitstringType, ): """Restrict bitstrings to a subset of bitstring indices. Args: strings: The bitstrings. indices: The indices of the bitstrings to restrict to. bitstring_type: The bitstring type of the input. Returns: The restricted bitstrings. """ if bitstring_type is BitstringType.STRING: return [ "".join(s[-1 - i] for i in indices[::-1]) for s in cast(list[str], strings) ] if bitstring_type is BitstringType.INT: return [ sum((s >> index & 1) * (1 << i) for i, index in enumerate(indices)) for s in cast(list[int], strings) ] if bitstring_type is BitstringType.BIT_ARRAY: return cast(np.ndarray, strings)[:, [-1 - i for i in indices[::-1]]] def concatenate_bitstrings( strings_a: list[str] | list[int] | np.ndarray, strings_b: list[str] | list[int] | np.ndarray, bitstring_type: BitstringType, length: int, ): """Concatenate bitstrings. Bitstrings are concatenated in "little endian" order. That is, a bitstring from the first list will appear on the right side of the concatenated bitstring. Args: strings_a: The first list of bitstrings. strings_b: The second list of bitstrings. bitstring_type: The bitstring type of the input. length: The length of a bitstring in the first list of bitstrings. Returns: The concatenated bitstrings. """ if bitstring_type is BitstringType.STRING: return ["".join((s_b, s_a)) for s_a, s_b in zip(strings_a, strings_b)] if bitstring_type is BitstringType.INT: return [(s_b << length) + s_a for s_a, s_b in zip(strings_a, strings_b)] if bitstring_type is BitstringType.BIT_ARRAY: return np.concatenate([strings_b, strings_a], axis=1)
[docs] def addresses_to_strings( addresses: Sequence[int] | np.ndarray, norb: int, nelec: int | tuple[int, int], concatenate: bool = True, bitstring_type: BitstringType = BitstringType.INT, ): """Convert state vector addresses to bitstrings. Example: .. code:: import ffsim norb = 3 nelec = (2, 1) dim = ffsim.dim(norb, nelec) strings = ffsim.addresses_to_strings(range(5), norb, nelec) print(strings) # prints [11, 19, 35, 13, 21] strings = ffsim.addresses_to_strings( range(5), norb, nelec, bitstring_type=ffsim.BitstringType.STRING ) print(strings) # prints ['001011', '010011', '100011', '001101', '010101'] strings = ffsim.addresses_to_strings( range(5), norb, nelec, bitstring_type=ffsim.BitstringType.BIT_ARRAY ) print(strings) # prints # [[False False True False True True] # [False True False False True True] # [ True False False False True True] # [False False True True False True] # [False True False True False True]] Args: addresses: The state vector addresses to convert to bitstrings. norb: The number of spatial orbitals. nelec: Either a single integer representing the number of fermions for a spinless system, or a pair of integers storing the numbers of spin alpha and spin beta fermions. bitstring_type: The desired type of bitstring output. concatenate: Whether to concatenate the spin-alpha and spin-beta parts of the bitstrings. If True, then a single list of concatenated bitstrings is returned. The strings are concatenated in the order :math:`s_b s_a`, that is, the alpha string appears on the right. If False, then two lists are returned, ``(strings_a, strings_b)``. Note that the list of alpha strings appears first, that is, on the left. In the spinless case (when `nelec` is an integer), this argument is ignored. Returns: The bitstrings. The type of the output depends on `bitstring_type` and `concatenate`. """ if isinstance(nelec, int): # Spinless case return convert_bitstring_type( [ int(s) for s in cistring.addrs2str(norb=norb, nelec=nelec, addrs=addresses) ], input_type=BitstringType.INT, output_type=bitstring_type, length=norb, ) # Spinful case n_alpha, n_beta = nelec dim_b = math.comb(norb, n_beta) indices_a, indices_b = np.divmod(addresses, dim_b) strings_a = convert_bitstring_type( [int(s) for s in cistring.addrs2str(norb=norb, nelec=n_alpha, addrs=indices_a)], input_type=BitstringType.INT, output_type=bitstring_type, length=norb, ) strings_b = convert_bitstring_type( [int(s) for s in cistring.addrs2str(norb=norb, nelec=n_beta, addrs=indices_b)], input_type=BitstringType.INT, output_type=bitstring_type, length=norb, ) if concatenate: return concatenate_bitstrings( strings_a, strings_b, bitstring_type=bitstring_type, length=norb ) return strings_a, strings_b
[docs] def strings_to_addresses( strings: Sequence[int] | Sequence[str] | np.ndarray, norb: int, nelec: int | tuple[int, int], ) -> np.ndarray: """Convert bitstrings to state vector addresses. Example: .. code:: import numpy as np import ffsim norb = 3 nelec = (2, 1) dim = ffsim.dim(norb, nelec) addresses = ffsim.strings_to_addresses( [ 0b001011, 0b010101, 0b100101, 0b010110, 0b100110, ], norb, nelec, ) print(addresses) # prints [0 4 5 7 8] addresses = ffsim.strings_to_addresses( [ "001011", "010101", "100101", "010110", "100110", ], norb, nelec, ) print(addresses) # prints [0 4 5 7 8] addresses = ffsim.strings_to_addresses( np.array( [ [False, False, True, False, True, True], [False, True, False, True, False, True], [True, False, False, True, False, True], [False, True, False, True, True, False], [True, False, False, True, True, False], ] ), norb, nelec, ) print(addresses) # prints [0 4 5 7 8] Args: strings: The bitstrings to convert to state vector addresses. Can be a list of strings, a list of integers, or a Numpy array of bits. norb: The number of spatial orbitals. nelec: Either a single integer representing the number of fermions for a spinless system, or a pair of integers storing the numbers of spin alpha and spin beta fermions. Returns: The state vector addresses, as a Numpy array of integers. """ if not len(strings): return np.array([]) if isinstance(strings, np.ndarray) and strings.ndim == 2: bitstring_type = BitstringType.BIT_ARRAY elif isinstance(strings[0], str): bitstring_type = BitstringType.STRING else: bitstring_type = BitstringType.INT strings = convert_bitstring_type( strings, input_type=bitstring_type, output_type=BitstringType.INT, length=norb ) if isinstance(nelec, int): return cistring.strs2addr(norb=norb, nelec=nelec, strings=strings) n_alpha, n_beta = nelec strings = np.asarray(strings) strings_a = strings & ((1 << norb) - 1) strings_b = strings >> norb addrs_a = cistring.strs2addr(norb=norb, nelec=n_alpha, strings=strings_a) addrs_b = cistring.strs2addr(norb=norb, nelec=n_beta, strings=strings_b) dim_b = math.comb(norb, n_beta) return addrs_a * dim_b + addrs_b
def bitstring_to_occupied_orbitals(bitstring: int) -> list[int]: """Return a list of bit indices where a bitstring is equal to one.""" return [i for i in range(bitstring.bit_length()) if bitstring >> i & 1]