qiskit_finance.circuit.library.probability_distributions.normal のソースコード

# This code is part of a Qiskit project.
#
# (C) Copyright IBM 2017, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""A circuit that encodes a discretized normal probability distribution in qubit amplitudes."""

from typing import Tuple, Union, List, Optional, Any
import numpy as np
from qiskit.circuit import QuantumCircuit


[ドキュメント]class NormalDistribution(QuantumCircuit): r"""A circuit to encode a discretized normal distribution in qubit amplitudes. The probability density function of the normal distribution is defined as .. math:: \mathbb{P}(X = x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \mu)^2}{\sigma^2}} .. note:: The parameter ``sigma`` in this class equals the **variance**, :math:`\sigma^2` and not the standard deviation. This is for consistency with multivariate distributions, where the uppercase sigma, :math:`\Sigma`, is associated with the covariance. This circuit considers the discretized version of the normal distribution on ``2 ** num_qubits`` equidistant points, :math:`x_i`, truncated to ``bounds``. For a one-dimensional random variable, meaning `num_qubits` is a single integer, it applies the operation .. math:: \mathcal{P}_X |0\rangle^n = \sum_{i=0}^{2^n - 1} \sqrt{\mathbb{P}(x_i)} |i\rangle where :math:`n` is `num_qubits`. .. note:: The circuit loads the **square root** of the probabilities into the qubit amplitudes such that the sampling probability, which is the square of the amplitude, equals the probability of the distribution. In the multi-dimensional case, the distribution is defined as .. math:: \mathbb{P}(X = x) = \frac{\Sigma^{-1}}{\sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{\Sigma}} where :math:`\Sigma` is the covariance. To specify a multivariate normal distribution, ``num_qubits`` is a list of integers, each specifying how many qubits are used to discretize the respective dimension. The arguments ``mu`` and ``sigma`` in this case are a vector and square matrix. If for instance, ``num_qubits = [2, 3]`` then ``mu`` is a 2d vector and ``sigma`` is the :math:`2 \times 2` covariance matrix. The first dimension is discretized using 2 qubits, hence on 4 points, and the second dimension on 3 qubits, hence 8 points. Therefore the random variable is discretized on :math:`4 \times 8 = 32` points. Since, in general, it is not yet known how to efficiently prepare the qubit amplitudes to represent a normal distribution, this class computes the expected amplitudes and then uses the ``QuantumCircuit.initialize`` method to construct the corresponding circuit. This circuit is for example used in amplitude estimation applications, such as finance [1, 2], where customer demand or the return of a portfolio could be modeled using a normal distribution. Examples: >>> from qiskit_finance.circuit.library.probability_distributions import NormalDistribution >>> circuit = NormalDistribution(3, mu=1, sigma=1, bounds=(0, 2)) >>> circuit.decompose().draw() » q_0: ───────────────────────────────────────────────────» ┌────────────────────────┐» q_1: ─────────────────────────┤0 ├» ┌───────────────────────┐│ multiplex2_reverse_dg │» q_2: ┤ multiplex1_reverse_dg ├┤1 ├» └───────────────────────┘└────────────────────────┘» « ┌────────────────────────┐ «q_0: ┤0 ├ « │ │ «q_1: ┤1 multiplex3_reverse_dg ├ « │ │ «q_2: ┤2 ├ « └────────────────────────┘ >>> mu = [1, 0.9] >>> sigma = [[1, -0.2], [-0.2, 1]] >>> circuit = NormalDistribution([2, 3], mu, sigma) >>> circuit.num_qubits 5 >>> import os >>> from qiskit import QuantumCircuit >>> mu = [1, 0.9] >>> sigma = [[1, -0.2], [-0.2, 1]] >>> bounds = [(0, 1), (-1, 1)] >>> p_x = NormalDistribution([2, 3], mu, sigma, bounds) >>> circuit = QuantumCircuit(6) >>> _ = circuit.append(p_x, list(range(5))) >>> for i in range(5): ... _ = circuit.cry(2 ** i, i, 5) >>> # strip trailing white spaces to match the expected output >>> print(os.linesep.join([s.rstrip() for s in circuit.draw().lines()])) ┌───────┐ q_0: ┤0 ├────■───────────────────────────────────────── │ │ │ q_1: ┤1 ├────┼────────■──────────────────────────────── │ │ │ │ q_2: ┤2 P(X) ├────┼────────┼────────■─────────────────────── │ │ │ │ │ q_3: ┤3 ├────┼────────┼────────┼────────■────────────── │ │ │ │ │ │ q_4: ┤4 ├────┼────────┼────────┼────────┼────────■───── └───────┘┌───┴───┐┌───┴───┐┌───┴───┐┌───┴───┐┌───┴────┐ q_5: ─────────┤ Ry(1) ├┤ Ry(2) ├┤ Ry(4) ├┤ Ry(8) ├┤ Ry(16) ├ └───────┘└───────┘└───────┘└───────┘└────────┘ References: [1]: Gacon, J., Zoufal, C., & Woerner, S. (2020). Quantum-Enhanced Simulation-Based Optimization. `arXiv:2005.10780 <http://arxiv.org/abs/2005.10780>`_ [2]: Woerner, S., & Egger, D. J. (2018). Quantum Risk Analysis. `arXiv:1806.06893 <http://arxiv.org/abs/1806.06893>`_ """ def __init__( self, num_qubits: Union[int, List[int]], mu: Optional[Union[float, List[float]]] = None, sigma: Optional[Union[float, List[float]]] = None, bounds: Optional[Union[Tuple[float, float], List[Tuple[float, float]]]] = None, upto_diag: bool = False, name: str = "P(X)", ) -> None: r""" Args: num_qubits: The number of qubits used to discretize the random variable. For a 1d random variable, ``num_qubits`` is an integer, for multiple dimensions a list of integers indicating the number of qubits to use in each dimension. mu: The parameter :math:`\mu`, which is the expected value of the distribution. Can be either a float for a 1d random variable or a list of floats for a higher dimensional random variable. Defaults to 0. sigma: The parameter :math:`\sigma^2` or :math:`\Sigma`, which is the variance or covariance matrix. Default to the identity matrix of appropriate size. bounds: The truncation bounds of the distribution as tuples. For multiple dimensions, ``bounds`` is a list of tuples ``[(low0, high0), (low1, high1), ...]``. If ``None``, the bounds are set to ``(-1, 1)`` for each dimension. upto_diag: If True, load the square root of the probabilities up to multiplication with a diagonal for a more efficient circuit. name: The name of the circuit. """ _check_dimensions_match(num_qubits, mu, sigma, bounds) _check_bounds_valid(bounds) # set default arguments dim = 1 if isinstance(num_qubits, int) else len(num_qubits) if mu is None: mu = 0 if dim == 1 else [0] * dim if sigma is None: sigma = 1 if dim == 1 else np.eye(dim) # type: ignore[assignment] if bounds is None: bounds = (-1, 1) if dim == 1 else [(-1, 1)] * dim if isinstance(num_qubits, int): # univariate case inner = QuantumCircuit(num_qubits, name=name) x = np.linspace(bounds[0], bounds[1], num=2**num_qubits) # type: Any else: # multivariate case inner = QuantumCircuit(sum(num_qubits), name=name) # compute the evaluation points using numpy.meshgrid # indexing 'ij' yields the "column-based" indexing meshgrid = np.meshgrid( *[ np.linspace(bound[0], bound[1], num=2 ** num_qubits[i]) # type: ignore for i, bound in enumerate(bounds) ], indexing="ij", ) # flatten into a list of points x = list(zip(*[grid.flatten() for grid in meshgrid])) from scipy.stats import multivariate_normal # compute the normalized, truncated probabilities probabilities = multivariate_normal.pdf(x, mu, sigma) normalized_probabilities = probabilities / np.sum(probabilities) # store the values, probabilities and bounds to make them user accessible self._values = x self._probabilities = normalized_probabilities self._bounds = bounds super().__init__(*inner.qregs, name=name) # use default the isometry (or initialize w/o resets) algorithm to construct the circuit # pylint: disable=no-member if upto_diag: inner.isometry(np.sqrt(normalized_probabilities), inner.qubits, None) self.append(inner.to_instruction(), inner.qubits) # Isometry is not a Gate else: from qiskit.extensions import Initialize # pylint: disable=cyclic-import initialize = Initialize(np.sqrt(normalized_probabilities)) circuit = initialize.gates_to_uncompute().inverse() inner.compose(circuit, inplace=True) self.append(inner.to_gate(), inner.qubits) @property def values(self) -> np.ndarray: """Return the discretized points of the random variable.""" return self._values @property def probabilities(self) -> np.ndarray: """Return the sampling probabilities for the values.""" return self._probabilities @property def bounds(self) -> Union[Tuple[float, float], List[Tuple[float, float]]]: """Return the bounds of the probability distribution.""" return self._bounds
def _check_dimensions_match(num_qubits, mu, sigma, bounds): num_qubits = [num_qubits] if not isinstance(num_qubits, (list, np.ndarray)) else num_qubits dim = len(num_qubits) if mu is not None: mu = [mu] if not isinstance(mu, (list, np.ndarray)) else mu if len(mu) != dim: raise ValueError( f"Dimension of mu ({len(mu)}) does not match the dimension of the " f"random variable specified by the number of qubits ({dim})" ) if sigma is not None: sigma = [[sigma]] if not isinstance(sigma, (list, np.ndarray)) else sigma if len(sigma) != dim or len(sigma[0]) != dim: raise ValueError( f"Dimension of sigma ({len(sigma)} x {len(sigma[0])}) does not match the dimension of " f"the random variable specified by the number of qubits ({dim})" ) if bounds is not None: # bit differently to cover the case the users might pass `bounds` as a single list, # e.g. [0, 1], instead of a tuple bounds = [bounds] if not isinstance(bounds[0], tuple) else bounds if len(bounds) != dim: raise ValueError( f"Dimension of bounds ({len(bounds)}) does not match the dimension of the " f"random variable specified by the number of qubits ({dim})" ) def _check_bounds_valid(bounds): if bounds is None: return bounds = [bounds] if not isinstance(bounds[0], tuple) else bounds for i, bound in enumerate(bounds): if not bound[1] - bound[0] > 0: raise ValueError( f"Dimension {i} of the bounds are invalid, must be a non-empty " "interval where the lower bounds is smaller than the upper bound." )