Source code for qiskit_experiments.library.randomized_benchmarking.layer_fidelity_analysis
# This code is part of Qiskit.## (C) Copyright IBM 2023.## This code is licensed under the Apache License, Version 2.0. You may# obtain a copy of this license in the LICENSE.txt file in the root directory# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.## Any modifications or derivative works of this code must retain this# copyright notice, and modified files need to carry a notice indicating# that they have been altered from the originals."""Analysis classes for Layer Fidelity RB."""fromtypingimportList,Tuple,Unionimportloggingimporttracebackimportlmfitimportnumpyasnpimportqiskit_experiments.curve_analysisascurveimportqiskit_experiments.database_service.device_componentasdevicefromqiskit_experiments.exceptionsimportAnalysisErrorfromqiskit_experiments.frameworkimportCompositeAnalysis,AnalysisResultData,ExperimentDatafromqiskit_experiments.framework.containersimportFigureType,ArtifactDataLOG=logging.getLogger(__name__)class_ProcessFidelityAnalysis(curve.CurveAnalysis):r"""A class to estimate process fidelity from one of 1Q/2Q simultaneous direct RB experiments # section: overview This analysis takes only a single series. This series is fit by the exponential decay function. From the fit :math:`\alpha` value this analysis estimates the process fidelity: .. math:: F = \frac{1+(d^2-1)\alpha}{d^2} # section: fit_model .. math:: F(x) = a \alpha^x + b # section: fit_parameters defpar a: desc: Height of decay curve. init_guess: Determined by :math:`1 - b`. bounds: [0, 1] defpar b: desc: Base line. init_guess: Determined by :math:`(1/2)^n` where :math:`n` is number of qubit. bounds: [0, 1] defpar \alpha: desc: Depolarizing parameter. init_guess: Determined by :func:`~.guess.rb_decay`. bounds: [0, 1] # section: reference .. ref_arxiv:: 1 2311.05933 """def__init__(self,physical_qubits):super().__init__(models=[lmfit.models.ExpressionModel(expr="a * alpha ** x + b",name="rb_decay",)])self._physical_qubits=physical_qubitsself.set_options(outcome="0"*len(physical_qubits),figure_names="DirectRB_Q"+"_Q".join(map(str,physical_qubits))+".svg",)self.plotter.set_figure_options(figure_title=f"Simultaneous Direct RB on Qubit{physical_qubits}",)@classmethoddef_default_options(cls):"""Default analysis options."""default_options=super()._default_options()default_options.plotter.set_figure_options(xlabel="Layers",ylabel="Ground State Population",)default_options.plot_raw_data=Truedefault_options.result_parameters=["alpha"]default_options.average_method="sample"returndefault_optionsdef_generate_fit_guesses(self,user_opt:curve.FitOptions,curve_data:curve.ScatterTable,)->Union[curve.FitOptions,List[curve.FitOptions]]:"""Create algorithmic initial fit guess from analysis options and curve data. Args: user_opt: Fit options filled with user provided guess and bounds. curve_data: Formatted data collection to fit. Returns: List of fit options that are passed to the fitter function. """user_opt.bounds.set_if_empty(a=(0,1),alpha=(0,1),b=(0,1),)b_guess=1/2**len(self._physical_qubits)alpha_guess=curve.guess.rb_decay(curve_data.x,curve_data.y,b=b_guess)a_guess=(curve_data.y[0]-b_guess)/(alpha_guess**curve_data.x[0])user_opt.p0.set_if_empty(b=b_guess,a=a_guess,alpha=alpha_guess,)returnuser_optdef_create_analysis_results(self,fit_data:curve.CurveFitResult,quality:str,**metadata,)->List[AnalysisResultData]:"""Create analysis results for important fit parameters. Args: fit_data: Fit outcome. quality: Quality of fit outcome. Returns: List of analysis result data. """outcomes=super()._create_analysis_results(fit_data,quality,**metadata)num_qubits=len(self._physical_qubits)d=2**num_qubits# Calculate process fidelityalpha=fit_data.ufloat_params["alpha"]pf=(1+(d*d-1)*alpha)/(d*d)quality,reason=self._evaluate_quality_with_reason(fit_data)metadata["qubits"]=self._physical_qubitsmetadata["reason"]=reasonmetadata.update(fit_data.params)outcomes.append(AnalysisResultData(name="ProcessFidelity",value=pf,chisq=fit_data.reduced_chisq,quality=quality,extra=metadata,))returnoutcomesdef_run_analysis(self,experiment_data:ExperimentData)->Tuple[List[Union[AnalysisResultData,ArtifactData]],List[FigureType]]:try:returnsuper()._run_analysis(experiment_data)exceptException:# pylint: disable=broad-exceptLOG.error("%s(%s) failed: %s",self.__class__.__name__,str(self._physical_qubits),traceback.format_exc(),)failed_result=AnalysisResultData(name="ProcessFidelity",value=None,quality="bad",extra={"qubits":self._physical_qubits,"reason":"analysis_failure"},)return[failed_result],[]def_get_experiment_components(self,experiment_data:ExperimentData):"""Set physical qubits to the experiment components."""return[device.Qubit(qubit)forqubitinself._physical_qubits]def_evaluate_quality_with_reason(self,fit_data:curve.CurveFitResult,)->Tuple[str,Union[str,None]]:"""Evaluate quality of the fit result and the reason if it is no good. Args: fit_data: Fit outcome. Returns: Pair of strings that represent quality ("good" or "bad") and its reason if "bad". """# Too large SPAMy_intercept=fit_data.params["a"]+fit_data.params["b"]ify_intercept<0.7:return"bad","large_spam"# Convergence to a bad value (probably due to bad readout)ideal_limit=1/(2**len(self._physical_qubits))iffit_data.params["b"]<=0orabs(fit_data.params["b"]-ideal_limit)>0.3:return"bad","biased_tail"# Too good fidelity (negative decay)iffit_data.params["alpha"]<0:return"bad","negative_decay"# Large residual errors in terms of reduced Chi-squareiffit_data.reduced_chisq>3.0:return"bad","large_chisq"# Too good Chi-squareiffit_data.reduced_chisq==0:return"bad","zero_chisq"return"good",Noneclass_SingleLayerFidelityAnalysis(CompositeAnalysis):"""A class to estimate a process fidelity per disjoint layer."""def__init__(self,layer,analyses=None):ifanalyses:iflen(layer)!=len(analyses):raiseAnalysisError("'analyses' must have the same length with 'layer'")else:analyses=[_ProcessFidelityAnalysis(qubits)forqubitsinlayer]super().__init__(analyses,flatten_results=True)self._layer=layerdef_run_analysis(self,experiment_data:ExperimentData)->Tuple[List[Union[AnalysisResultData,ArtifactData]],List[FigureType]]:try:# Run composite analysis and extract sub-experiments resultsanalysis_results,figures=super()._run_analysis(experiment_data)# Calculate single layer fidelity from process fidelities of subsystemspf_results=[resforresinanalysis_resultsifres.name=="ProcessFidelity"]pfs=[res.valueforresinpf_results]slf=np.prod(pfs)quality_slf="good"ifall(sub.quality=="good"forsubinpf_results)else"bad"slf_result=AnalysisResultData(name="SingleLF",value=slf,quality=quality_slf,extra={"qubits":[qforqubitsinself._layerforqinqubits]},)# Return combined resultsanalysis_results=[slf_result]+analysis_resultsreturnanalysis_results,figuresexceptException:# pylint: disable=broad-exceptLOG.error("%s failed: %s",self.__class__.__name__,traceback.format_exc())failed_result=AnalysisResultData(name="SingleLF",value=None,quality="bad",extra={"qubits":[qforqubitsinself._layerforqinqubits],"reason":"analysis_failure",},)return[failed_result]+analysis_results,figuresdef_get_experiment_components(self,experiment_data:ExperimentData):"""Set physical qubits to the experiment components."""return[device.Qubit(q)forqubitsinself._layerforqinqubits]
[docs]classLayerFidelityAnalysis(CompositeAnalysis):r"""A class to analyze layer fidelity experiments. # section: overview It estimates Layer Fidelity and EPLG (error per layered gate) by fitting the exponential curve to estimate the decay rate, hence the process fidelity, for each 2-qubit (or 1-qubit) direct randomized benchmarking result. See Ref. [1] for details. # section: reference .. ref_arxiv:: 1 2311.05933 """def__init__(self,layers,analyses=None):ifanalyses:iflen(layers)!=len(analyses):raiseAnalysisError("'analyses' must have the same length with 'layers'")else:analyses=[_SingleLayerFidelityAnalysis(a_layer)fora_layerinlayers]super().__init__(analyses,flatten_results=True)self.num_layers=len(layers)self.num_2q_gates=sum(1iflen(qs)==2else0forlayinlayersforqsinlay)def_run_analysis(self,experiment_data:ExperimentData)->Tuple[List[Union[AnalysisResultData,ArtifactData]],List[FigureType]]:r"""Run analysis for Layer Fidelity experiment. It invokes :meth:`CompositeAnalysis._run_analysis` that will recursively invoke ``_run_analysis`` of the sub-experiments (1Q/2Q simultaneous direct RBs for each layer). Based on the results, it computes Layer Fidelity and EPLG (error per layered gate). Args: experiment_data: the experiment data to analyze. Returns: A pair ``(analysis_results, figures)`` where ``analysis_results`` is a list of :class:`AnalysisResultData` objects, and ``figures`` is a list of any figures for the experiment. If an analysis fails, an analysis result with ``None`` value will be returned. """try:# Run composite analysis and extract sub-experiments resultsanalysis_results,figures=super()._run_analysis(experiment_data)# Calculate full layer fidelity from single layer fidelitiesslf_results=[resforresinanalysis_resultsifres.name=="SingleLF"]slfs=[res.valueforresinslf_results]lf=np.prod(slfs)quality_lf="good"ifall(sub.quality=="good"forsubinslf_results)else"bad"lf_result=AnalysisResultData(name="LF",value=lf,quality=quality_lf,)eplg=1-(lf**(1/self.num_2q_gates))eplg_result=AnalysisResultData(name="EPLG",value=eplg,quality=quality_lf,)# Return combined resultsanalysis_results=[lf_result,eplg_result]+analysis_resultsreturnanalysis_results,figuresexceptException:# pylint: disable=broad-exceptLOG.error("%s failed: %s",self.__class__.__name__,traceback.format_exc())failed_results=[AnalysisResultData(name="LF",value=None,quality="bad",extra={"reason":"analysis_failure"},),AnalysisResultData(name="EPLG",value=None,quality="bad",extra={"reason":"analysis_failure"},),]returnfailed_results+analysis_results,figures