Source code for qiskit_experiments.library.characterization.analysis.zz_ramsey_analysis
# This code is part of Qiskit.## (C) Copyright IBM 2022.## This code is licensed under the Apache License, Version 2.0. You may# obtain a copy of this license in the LICENSE.txt file in the root directory# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.## Any modifications or derivative works of this code must retain this# copyright notice, and modified files need to carry a notice indicating# that they have been altered from the originals."""Analysis class for ZZ Ramsey experiment"""fromtypingimportList,Tuple,Unionimportlmfitimportnumpyasnpfromqiskit.providers.optionsimportOptionsimportqiskit_experiments.curve_analysisascurvefromqiskit_experiments.curve_analysisimport(CurveAnalysis,ScatterTable,CurveFitResult,FitOptions,)fromqiskit_experiments.curve_analysis.utilsimportis_error_not_significant
[docs]classZZRamseyAnalysis(CurveAnalysis):# Disable long line check because we can't break the long math lines# pylint: disable=line-too-longr"""A class to analyze a :math:`ZZ` Ramsey experiment. # section: fit_model Analyze a :math:`ZZ` Ramsey experiment by fitting the :code:`'0'` and :code:`'1'` series to sinusoidal functions as defined in the :class:`ZZRamsey` experiment. The two functions share the frequency, amplitude, decay constant, baseline, and phase parameters. .. math:: y_0 = - {\rm amp} \cdot e^{-x/\tau} \cos\left(2 \pi\cdot {\rm freq - zz / 2}\cdot x + {\rm phase}\right) + {\rm base} \\ y_1 = - {\rm amp} \cdot e^{-x/\tau} \cos\left(2 \pi\cdot {\rm freq + zz / 2}\cdot x + {\rm phase}\right) + {\rm base} :math:`freq` is the same as the virtual frequency :math:`f` mentioned in :class:`ZZRamsey`. # section: fit_parameters defpar \rm amp: desc: Amplitude of the sinusoidal curves. init_guess: Half of the maximum y value less the minimum y value. bounds: [0, the peak to peak range of the data] defpar \tau: desc: The exponential decay of the curve amplitudes. init_guess: Inferred by comparing the peak to peak amplitude for longer delay values with that of shorter delay values and assuming an exponential decay in amplitude. bounds: [1/4 of the typical time spacing, 10 times the maximum delay time]. defpar \rm base: desc: Base line of both series. init_guess: The average of the data, excluding outliers bounds: [the minimum amplitude less the peak to peak of the data, the maximum amplitude plus the peak to peak of the data] defpar \rm freq: desc: Average frequency of both series. init_guess: The average of the frequencies with the highest power spectral density for each series. bounds: [0, the Nyquist frequency of the data]. defpar \rm zz: desc: The :math:`ZZ` value for the qubit pair. In terms of the fit, this is frequency difference between series 1 and series 0. init_guess: The difference between the frequencies with the highest power spectral density for each series bounds: [-inf, inf]. defpar \rm phase: desc: Common phase offset. init_guess: Zero bounds: [-pi, pi]. """# pylint: enable=line-too-longdef__init__(self):super().__init__(models=[lmfit.models.ExpressionModel(expr="-amp * exp(-x / tau) * cos(2 * pi * (freq - zz / 2) * x + phase) + base",name="0",),lmfit.models.ExpressionModel(expr="-amp * exp(-x / tau) * cos(2 * pi * (freq + zz / 2) * x + phase) + base",name="1",),])@classmethoddef_default_options(cls)->Options:"""Return the default analysis options. See :meth:`~qiskit_experiment.curve_analysis.CurveAnalysis._default_options` for descriptions of analysis options. """default_options=super()._default_options()default_options.result_parameters=["zz"]default_options.plotter.set_figure_options(xlabel="Delay",xval_unit="s",ylabel="P(1)",)default_options.data_subfit_map={"0":{"series":"0"},"1":{"series":"1"},}returndefault_optionsdef_generate_fit_guesses(self,user_opt:FitOptions,curve_data:ScatterTable,)->Union[FitOptions,List[FitOptions]]:"""Compute the initial guesses. Args: user_opt: Fit options filled with user provided guess and bounds. curve_data: Preprocessed data to be fit. Returns: List of fit options that are passed to the fitter function. """y_max=np.max(curve_data.y)y_min=np.min(curve_data.y)y_ptp=y_max-y_minx_max=np.max(curve_data.x)data_0=curve_data.filter(series="0")data_1=curve_data.filter(series="1")deftypical_step(arr):"""Find the typical step size of an array"""steps=np.diff(np.sort(arr))# If points are not unique, there will be 0's that don't count as# stepssteps=steps[steps!=0]returnnp.median(steps)x_step=max(typical_step(data_0.x),typical_step(data_1.x))user_opt.bounds.set_if_empty(amp=(0,y_max-y_min),tau=(x_step/4,10*x_max),base=(y_min-y_ptp,y_max+y_ptp),phase=(-np.pi,np.pi),freq=(0,1/2/x_step),)freq_guesses=[curve.guess.frequency(data_0.x,data_0.y),curve.guess.frequency(data_1.x,data_1.y),]base_guesses=[curve.guess.constant_sinusoidal_offset(data_0.y),curve.guess.constant_sinusoidal_offset(data_1.y),]defrough_sinusoidal_decay_constant(x_data:np.ndarray,y_data:np.ndarray,bounds:Tuple[float,float])->float:"""Estimate the decay constant of y_data vs x_data This function assumes the data is roughly evenly spaced and that the y_data goes through a few periods so that the peak to peak value early in the data can be compared to the peak to peak later in the data to estimate the decay constant. Args: x_data: x-axis data y_data: y-axis data bounds: minimum and maximum allowed decay constant Returns: The bounded guess of the decay constant """x_median=np.median(x_data)i_left=x_data<x_mediani_right=x_data>x_mediany_left=np.ptp(y_data[i_left])y_right=np.ptp(y_data[i_right])x_left=np.average(x_data[i_left])x_right=np.average(x_data[i_right])# Now solve y_left = exp(-x_left / tau) and# y_right = exp(-x_right / tau) for taudenom=np.log(y_right/y_left)ifdenom<0:tau=(x_left-x_right)/denomelse:# If amplitude is constant or growing from left to right, bound# to the maximum allowed tautau=bounds[1]returnmax(min(tau,bounds[1]),bounds[0])user_opt.p0.set_if_empty(tau=rough_sinusoidal_decay_constant(curve_data.x,curve_data.y,user_opt.bounds["tau"]),amp=y_ptp/2,phase=0.0,freq=float(np.average(freq_guesses)),base=np.average(base_guesses),zz=freq_guesses[1]-freq_guesses[0],)returnuser_optdef_evaluate_quality(self,fit_data:CurveFitResult)->Union[str,None]:"""Algorithmic criteria for whether the fit is good or bad. A good fit has: - a reduced chi-squared lower than three - an error on the frequency smaller than the frequency Args: fit_data: The fit result of the analysis Returns: The automated fit quality assessment as a string """freq=fit_data.ufloat_params["freq"]zz=fit_data.ufloat_params["zz"]amp=fit_data.ufloat_params["amp"]base=fit_data.ufloat_params["base"]rough_freq_magnitude=1/(fit_data.x_range[1]-fit_data.x_range[0])criteria=[is_error_not_significant(amp,fraction=0.2),is_error_not_significant(base,absolute=0.2*amp.nominal_value),is_error_not_significant(freq,absolute=0.2*rough_freq_magnitude),is_error_not_significant(zz,absolute=0.2*rough_freq_magnitude),]ifall(criteria):return"good"return"bad"