Source code for qiskit_experiments.library.characterization.analysis.ramsey_xy_analysis
# This code is part of Qiskit.## (C) Copyright IBM 2021.## This code is licensed under the Apache License, Version 2.0. You may# obtain a copy of this license in the LICENSE.txt file in the root directory# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.## Any modifications or derivative works of this code must retain this# copyright notice, and modified files need to carry a notice indicating# that they have been altered from the originals."""The analysis class for the Ramsey XY experiment."""fromtypingimportList,Unionimportlmfitimportnumpyasnpimportqiskit_experiments.curve_analysisascurve
[docs]classRamseyXYAnalysis(curve.CurveAnalysis):r"""Ramsey XY analysis based on a fit to a cosine function and a sine function. # section: fit_model Analyze a Ramsey XY experiment by fitting the X and Y series to a cosine and sine function, respectively. The two functions share the frequency and amplitude parameters. .. math:: y_X = {\rm amp}e^{-x/\tau}\cos\left(2\pi\cdot{\rm freq}_i\cdot x\right) + {\rm base} \\ y_Y = {\rm amp}e^{-x/\tau}\sin\left(2\pi\cdot{\rm freq}_i\cdot x\right) + {\rm base} # section: fit_parameters defpar \rm amp: desc: Amplitude of both series. init_guess: Half of the maximum y value less the minimum y value. When the oscillation frequency is low, it uses an averaged difference of Ramsey X data - Ramsey Y data. bounds: [0, 2 * average y peak-to-peak] defpar \tau: desc: The exponential decay of the curve. init_guess: The initial guess is obtained by fitting an exponential to the square root of (X data)**2 + (Y data)**2. bounds: [0, inf] defpar \rm base: desc: Base line of both series. init_guess: Roughly the average of the data. When the oscillation frequency is low, it uses an averaged data of Ramsey Y experiment. bounds: [min y - average y peak-to-peak, max y + average y peak-to-peak] defpar \rm freq: desc: Frequency of both series. This is the parameter of interest. init_guess: The frequency with the highest power spectral density. bounds: [-inf, inf] defpar \rm phase: desc: Common phase offset. init_guess: 0 bounds: [-pi, pi] """def__init__(self):super().__init__(models=[lmfit.models.ExpressionModel(expr="amp * exp(-x / tau) * cos(2 * pi * freq * x + phase) + base",name="X",),lmfit.models.ExpressionModel(expr="amp * exp(-x / tau) * sin(2 * pi * freq * x + phase) + base",name="Y",),])@classmethoddef_default_options(cls):"""Return the default analysis options. See :meth:`~qiskit_experiment.curve_analysis.CurveAnalysis._default_options` for descriptions of analysis options. """default_options=super()._default_options()default_options.data_subfit_map={"X":{"series":"X"},"Y":{"series":"Y"},}default_options.plotter.set_figure_options(xlabel="Delay",ylabel="Signal (arb. units)",xval_unit="s",)default_options.result_parameters=["freq"]returndefault_optionsdef_generate_fit_guesses(self,user_opt:curve.FitOptions,curve_data:curve.ScatterTable,)->Union[curve.FitOptions,List[curve.FitOptions]]:"""Create algorithmic initial fit guess from analysis options and curve data. Args: user_opt: Fit options filled with user provided guess and bounds. curve_data: Formatted data collection to fit. Returns: List of fit options that are passed to the fitter function. """ramx_data=curve_data.filter(series="X")ramy_data=curve_data.filter(series="Y")# At very low frequency, y value of X (Y) curve stay at P=1.0 (0.5) for all x values.# Computing y peak-to-peak with combined data gives fake amplitude of 0.25.# Same for base, i.e. P=0.75 is often estimated in this case.full_y_ptp=np.ptp(curve_data.y)avg_y_ptp=0.5*(np.ptp(ramx_data.y)+np.ptp(ramy_data.y))max_y=np.max(curve_data.y)min_y=np.min(curve_data.y)user_opt.bounds.set_if_empty(amp=(0,full_y_ptp*2),tau=(0,np.inf),base=(min_y-avg_y_ptp,max_y+avg_y_ptp),phase=(-np.pi,np.pi),)ifavg_y_ptp<0.5*full_y_ptp:# When X and Y curve don't oscillate, X (Y) usually stays at P(1) = 1.0 (0.5).# So peak-to-peak of full data is something around P(1) = 0.75, while# single curve peak-to-peak is almost zero.avg_x=np.average(ramx_data.y)avg_y=np.average(ramy_data.y)user_opt.p0.set_if_empty(amp=np.abs(avg_x-avg_y),tau=100*np.max(curve_data.x),base=avg_y,phase=0.0,freq=0.0,)returnuser_optbase_guess_x=curve.guess.constant_sinusoidal_offset(ramx_data.y)base_guess_y=curve.guess.constant_sinusoidal_offset(ramy_data.y)base_guess=0.5*(base_guess_x+base_guess_y)user_opt.p0.set_if_empty(amp=0.5*full_y_ptp,base=base_guess,phase=0.0,)# Guess the exponential decay by combining both curvesramx_unbiased=ramx_data.y-user_opt.p0["base"]ramy_unbiased=ramy_data.y-user_opt.p0["base"]decay_data=ramx_unbiased**2+ramy_unbiased**2ifnp.ptp(decay_data)<0.95*0.5*full_y_ptp:# When decay is less than 95 % of peak-to-peak value, ignore decay and# set large enough tau value compared with the measured x range.user_opt.p0.set_if_empty(tau=1000*np.max(curve_data.x))else:user_opt.p0.set_if_empty(tau=-1/curve.guess.exp_decay(ramx_data.x,decay_data))# Guess the oscillation frequency, remove offset to eliminate DC peakfreq_guess_x=curve.guess.frequency(ramx_data.x,ramx_unbiased)freq_guess_y=curve.guess.frequency(ramy_data.x,ramy_unbiased)freq_val=0.5*(freq_guess_x+freq_guess_y)# FFT might be up to 1/2 bin offdf=2*np.pi/(np.min(np.diff(ramx_data.x))*ramx_data.x.size)freq_guesses=[freq_val-df,freq_val+df,freq_val]# Ramsey XY is frequency sign sensitive.# Since experimental data is noisy, correct sign is hardly estimated with phase velocity.# Try both positive and negative frequency to find the best fit.opts=[]forsignin(1,-1):forfreq_guessinfreq_guesses:opt=user_opt.copy()opt.p0.set_if_empty(freq=sign*freq_guess)opts.append(opt)returnoptsdef_evaluate_quality(self,fit_data:curve.CurveFitResult)->Union[str,None]:"""Algorithmic criteria for whether the fit is good or bad. A good fit has: - a reduced chi-squared lower than three and greater than zero, - an error on the frequency smaller than the frequency. """fit_freq=fit_data.ufloat_params["freq"]criteria=[0<fit_data.reduced_chisq<3,curve.utils.is_error_not_significant(fit_freq),]ifall(criteria):return"good"return"bad"