Qiskit primitives#
- class qiskit_aqt_provider.primitives.sampler.AQTSampler[source]#
Bases:
BackendSampler
BaseSamplerV1
primitive for AQT backends.- __init__(backend: AQTResource, options: dict[str, Any] | None = None, skip_transpilation: bool = False) None [source]#
Initialize a
Sampler
primitive using an AQT backend.- Parameters:
backend – AQT resource to evaluate circuits on.
options – options passed through to the underlying
BackendSampler
.skip_transpilation – if
True
, do not transpile circuits before passing them to the execution backend.
Examples
Initialize a
Sampler
primitive on a AQT offline simulator:>>> import qiskit >>> from qiskit_aqt_provider import AQTProvider >>> from qiskit_aqt_provider.primitives import AQTSampler >>> >>> backend = AQTProvider("").get_backend("offline_simulator_no_noise") >>> sampler = AQTSampler(backend)
Configuring
options
on the backend will affect all circuit evaluations triggered by the Sampler primitive:>>> qc = qiskit.QuantumCircuit(2) >>> _ = qc.cx(0, 1) >>> _ = qc.measure_all() >>> >>> sampler.run(qc).result().metadata[0]["shots"] 100 >>> backend.options.shots = 123 >>> sampler.run(qc).result().metadata[0]["shots"] 123
The same effect is achieved by passing options to the
AQTSampler
initializer:>>> sampler = AQTSampler(backend, options={"shots": 120}) >>> sampler.run(qc).result().metadata[0]["shots"] 120
Passing the option in the
AQTSampler.run
call restricts the effect to a single evaluation:>>> sampler.run(qc, shots=130).result().metadata[0]["shots"] 130 >>> sampler.run(qc).result().metadata[0]["shots"] 120
- class qiskit_aqt_provider.primitives.estimator.AQTEstimator[source]#
Bases:
BackendEstimator
BaseEstimatorV1
primitive for AQT backends.- __init__(backend: AQTResource, options: dict[str, Any] | None = None, abelian_grouping: bool = True, skip_transpilation: bool = False) None [source]#
Initialize an
Estimator
primitive using an AQT backend.See
AQTSampler
for examples configuring run options.- Parameters:
backend – AQT resource to evaluate circuits on.
options – options passed to through to the underlying
BackendEstimator
.abelian_grouping – whether the observable should be grouped into commuting parts.
skip_transpilation – if
True
, do not transpile circuits before passing them to the execution backend.