BosonicOp#
- class BosonicOp(data, num_modes=None, *, copy=True, validate=True)[source]#
Bases:
SparseLabelOp
N-mode Bosonic operator.
A
BosonicOp
represents a weighted sum of bosonic creation/annihilation operator terms. These terms are encoded as sparse labels, which are strings consisting of a space-separated list of expressions. Each expression must look like[+-]_<index>
, where the<index>
is a non-negative integer representing the index of the bosonic mode where the+
(creation) or-
(annihilation) operation is to be performed. The value ofindex
is bound by the number of modes (num_modes
) of the operator (Note: since Python indices are 0-based, the maximum value an index can take is given bynum_modes-1
).Initialization
A
BosonicOp
is initialized with a dictionary, mapping terms to their respective coefficients:from qiskit_nature.second_q.operators import BosonicOp op = BosonicOp( { "+_0 -_0": 1.0, "+_1 -_1": -1.0, }, num_modes=2, )
By default, this way of initializing will create a full copy of the dictionary of coefficients. If you have very restricted memory resources available, or would like to avoid the additional copy, the dictionary will be stored by reference if you disable
copy
like so:some_big_data = { "+_0 -_0": 1.0, "+_1 -_1": -1.0, # ... } op = BosonicOp( some_big_data, num_modes=2, copy=False, )
Note
It is the users’ responsibility, that in the above scenario,
some_big_data
is not changed after initialization of the BosonicOp, since the operator contents are not guaranteed to remain unaffected by such changes.Algebra
This class supports the following basic arithmetic operations: addition, subtraction, scalar multiplication, operator multiplication, and adjoint. For example,
Addition
BosonicOp({"+_1": 1}, num_modes=2) + BosonicOp({"+_0": 1}, num_modes=2)
Sum
sum(BosonicOp({label: 1}, num_modes=3) for label in ["+_0", "-_1", "+_2 -_2"])
Scalar multiplication
0.5 * BosonicOp({"+_1": 1}, num_modes=2)
Operator multiplication
op1 = BosonicOp({"+_0 -_1": 1}, num_modes=2) op2 = BosonicOp({"-_0 +_0 +_1": 1}, num_modes=2) print(op1 @ op2)
Tensor multiplication
op = BosonicOp({"+_0 -_1": 1}, num_modes=2) print(op ^ op)
Adjoint
BosonicOp({"+_0 -_1": 1j}, num_modes=2).adjoint()
Iteration
Instances of
BosonicOp
are iterable. Iterating aBosonicOp
yields (term, coefficient) pairs describing the terms contained in the operator.- num_modes#
the number of modes on which this operator acts. This is considered a lower bound, which means that mathematical operations acting on two or more operators will result in a new operator with the maximum number of modes of any of the involved operators.
- Type:
int | None
Note
A BosonicOp can contain
qiskit.circuit.ParameterExpression
objects as coefficients. However, a BosonicOp containing parameters does not support the following methods:is_hermitian
- Parameters:
data (Mapping[str, _TCoeff]) – the operator data, mapping string-based keys to numerical values.
num_modes (int | None) – the number of modes on which this operator acts.
copy (bool) – when set to False the
data
will not be copied and the dictionary will be stored by reference rather than by value (which is the default;copy=True
). Note, that this requires you to not change the contents of the dictionary after constructing the operator. This also impliesvalidate=False
. Use with care!validate (bool) – when set to False the
data
keys will not be validated. Note, that the SparseLabelOp base class, makes no assumption about the data keys, so will not perform any validation by itself. Only concrete subclasses are encouraged to implement a key validation method. Disable this setting with care!
- Raises:
QiskitNatureError – when an invalid key is encountered during validation.
Attributes
- atol = 1e-08#
- register_length#
- rtol = 1e-05#
Methods
- adjoint()#
Return the adjoint of the Operator.
- Return type:
Self
- argsort(*, weight=False)#
Returns the keys which sort this operator.
- Parameters:
weight (bool) – when True, the returned keys will sort this operator according to the coefficient weights of the stored terms; when False, the keys will sort the operator by its keys (i.e. lexicographically).
- Returns:
The sequence of keys which sort this operator.
- Return type:
- assign_parameters(parameters)#
Assign parameters to new parameters or values.
- Parameters:
parameters (Mapping[ParameterExpression, _TCoeff]) – The mapping from parameters to new parameters or values.
- Returns:
A new operator with the parameters assigned.
- Return type:
- chop(atol=None)#
Chops the real and imaginary parts of the operator coefficients.
This function separately chops the real and imaginary parts of all coefficients to the provided tolerance. Parameters are chopped only if they are exactly zero.
- compose(other, qargs=None, front=False)[source]#
Returns the operator composition with another operator.
- Parameters:
- Returns:
The operator resulting from the composition.
- Return type:
Note
Composition (
&
) by default is defined as left matrix multiplication for matrix operators, while@
(equivalent todot()
) is defined as right matrix multiplication. This means thatA & B == A.compose(B)
is equivalent toB @ A == B.dot(A)
whenA
andB
are of the same type.Setting the
front=True
keyword argument changes this to right matrix multiplication which is equivalent to thedot()
methodA.dot(B) == A.compose(B, front=True)
.
- conjugate()#
Returns the conjugate of the
SparseLabelOp
.- Returns:
The complex conjugate of the starting
SparseLabelOp
.- Return type:
- dot(other, qargs=None)#
Return the right multiplied operator self * other.
- Parameters:
other (Operator) – an operator object.
qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
- Returns:
The right matrix multiplied Operator.
- Return type:
Operator
Note
The dot product can be obtained using the
@
binary operator. Hencea.dot(b)
is equivalent toa @ b
.
- equiv(other, *, atol=None, rtol=None)#
Check equivalence of two
SparseLabelOp
instances up to an accepted tolerance.- Parameters:
other (SparseLabelOp) – the second
SparseLabelOp
to compare with this instance.atol (float | None) – Absolute numerical tolerance. The default behavior is to use
self.atol
.rtol (float | None) – Relative numerical tolerance. The default behavior is to use
self.rtol
.
- Returns:
True if operators are equivalent, False if not.
- Raises:
ValueError – Raised if either operator contains parameters
- Return type:
- classmethod from_polynomial_tensor(tensor)[source]#
Constructs the operator from a
PolynomialTensor
.- Parameters:
tensor (PolynomialTensor) – the
PolynomialTensor
to be expanded.- Returns:
The constructed operator.
- Return type:
- classmethod from_terms(terms)[source]#
Constructs a new
SparseLabelOp
from a sequence returned byterms()
.
- get(k[, d]) D[k] if k in D, else d. d defaults to None. #
- index_order()[source]#
Convert to the equivalent operator with the terms of each label ordered by index.
- Returns:
A new index ordered BosonicOp (the original operator is not modified).
- Return type:
Note
You can use this method to achieve the most aggressive simplification of an operator without changing the operation order per index.
simplify()
does not reorder the terms and, thus, cannot deduce-_0 +_1
and+_1 -_0
to be identical labels. Calling this method will reorder the latter label to-_0 +_1
, correctly collapsing these two labels into one.
- induced_norm(order=1)#
Returns the p-norm induced by the operator coefficients.
If the operator is represented as a sum of terms
\[\sum_i w_i H_i\]then the induced \(p\)-norm is
\[\left(\sum_i |w_i|^p \right)^{1/p}\]This is the standard \(p\)-norm of the operator coefficients considered as a vector (see https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm). Note that this method does not normal-order or simplify the operator before computing the norm; performing either of those operations can affect the result.
- Parameters:
order (int) – Order \(p\) of the norm. The default value is 1.
- Returns:
The induced norm.
- Return type:
- Raises:
ValueError – Operator contains parameters.
- Return type:
- is_hermitian(atol=None)[source]#
Checks whether the operator is hermitian.
- Parameters:
atol (float | None) – Absolute numerical tolerance. The default behavior is to use
self.atol
.- Returns:
True if the operator is hermitian up to numerical tolerance, False otherwise.
- Raises:
ValueError – Operator contains parameters.
- Return type:
- is_zero(tol=None)#
Returns true if operator length is zero or all coefficients have value zero.
- items() a set-like object providing a view on D's items #
- keys() a set-like object providing a view on D's keys #
- normal_order()[source]#
Convert to the equivalent operator in normal order.
The normal order for bosons is defined [here](https://en.wikipedia.org/wiki/Normal_order#Bosons).
- Returns:
A new normal ordered BosonicOp (the original operator is not modified).
- Return type:
Note
This method implements the transformation of an operator to the normal ordered operator. The transformation is calculated by considering all commutation relations between the operators. For example, for the case \(\colon b_0 b_0^\dagger\colon\) where \(b_0\) is an annihilation operator, this method returns \(1 + b_0^\dagger b_0\) due to commutation relations. See the reference: [here](https://en.wikipedia.org/wiki/Normal_order#Multiple_bosons).
- classmethod one()#
Constructs a unity-operator.
- Returns:
The unity-operator of the given length.
- Return type:
- parameters()#
Returns a list of the parameters in the operator.
- Returns:
A list of the parameters in the operator.
- Return type:
list[ParameterExpression]
- permute_indices(permutation)#
Permutes the indices of the operator.
This method applies the provided index permutation to all labels of this operator. The provided permutation must be a sequence of integers whose length is equal to the
register_length
of the operator. The integer at any given index of the sequence indicates the new index which that location will be permuted to. For example:op = SparseLabelOp({"+_0 -_1 +_2 -_3": 1.0}) permuted_op = op.permute_indices([3, 1, 0, 2]) assert permuted_op == SparseLabelOp({"+_3 -_1 +_0 -_2": 1.0})
Warning
This permutation utility is very powerful. Be mindful of the implications such a permutation might have on other components of the stack. To name an example, the builtin two-qubit reduction of the
ParityMapper
might not yield the expected results when used on permuted operator.- Parameters:
permutation (Sequence[int]) – a sequence of integers indicating the permutation to be applied. See above for an example.
- Returns:
A new operator instance with the permuted indices.
- Raises:
ValueError – if the length of the
permutation
argument does not equalregister_length
.- Return type:
- power(n)#
Return the compose of a operator with itself n times.
- Parameters:
n (int) – the number of times to compose with self (n>0).
- Returns:
the n-times composed operator.
- Return type:
Clifford
- Raises:
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
- round(decimals=0)#
Rounds the operator coefficients to a specified number of decimal places.
- Parameters:
decimals (int) – the number of decimal places to round coefficients to. By default this will round to the nearest integer value.
- Returns:
The rounded operator.
- Return type:
- simplify(atol=None)[source]#
Simplify the operator.
The simplifications implemented by this method should be: - to eliminate terms whose coefficients are close (w.r.t.
atol
) to 0. - to combine the coefficients which correspond to equivalent terms (see also the note below)Note
simplify()
should be used to simplify terms whose coefficients are close to zero, up to the specified numerical tolerance. It still differs slightly fromchop()
because that will chop real and imaginary part components individually.Note
The meaning of “equivalence” between multiple terms depends on the specific operator subclass. As a restriction this method is required to preserve the order of appearance of the different components within a term. This avoids some possibly unexpected edge cases. However, this also means that some equivalencies cannot be detected. Check for other methods of a specific subclass which may affect the order of terms and can allow for further simplifications to be implemented. For example, check out
index_order()
.Note
simplify()
is not allowed to simplify the labels+_0 -_0
or-_0 +_0
. The former corresponds to the boson number operator, and when it is applied to a state yields the number of bosons in that state \(n\). Similarly, the latter yields \(1 + n\). As a consequence, the label+_0 -_0 -_1 +_0
will remain untouched by this method. This is in contrast to howFermionicOp.simplify()
works, because it exploits that \(n\) can be either \(0\) or \(1\).This method returns a new operator (the original operator is not modified).
- sort(*, weight=False)#
Returns a new sorted operator.
- Parameters:
weight (bool) – when True, the returned keys will sort this operator according to the coefficient weights of the stored terms; when False, the keys will sort the operator by its keys (i.e. lexicographically).
- Returns:
A new operator instance with its contents sorted.
- Return type:
- tensor(other)[source]#
Returns the tensor product with another SparseLabelOp.
- Parameters:
other (BosonicOp) – the other SparseLabelOp.
- Returns:
The operator resulting from the tensor product, \(self \otimes other\).
- Return type:
Note
The tensor product can be obtained using the
^
binary operator. Hencea.tensor(b)
is equivalent toa ^ b
.
- terms()[source]#
Provides an iterator analogous to
items()
but with the labels already split into pairs of operation characters and indices.- Yields:
A tuple with two items; the first one being a list of pairs of the form (char, int) where char is either + or - and the integer corresponds to the bosonic mode index on which the operator gets applied; the second item of the returned tuple is the coefficient of this term.
- Return type:
- transpose()[source]#
Returns the transpose of the operator.
- Returns:
The transpose of the operator.
- Return type:
- values() an object providing a view on D's values #
- classmethod zero()#
Constructs a zero-operator.
- Returns:
The zero-operator of the given length.
- Return type: