# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Quantum Volume analysis class.
"""
import math
import warnings
from typing import List
import numpy as np
import uncertainties
from qiskit_experiments.exceptions import AnalysisError
from qiskit_experiments.framework import (
    BaseAnalysis,
    AnalysisResultData,
    Options,
)
from qiskit_experiments.visualization import BasePlotter, MplDrawer
[docs]
class QuantumVolumePlotter(BasePlotter):
    """Plotter for QuantumVolumeAnalysis
    .. note::
        This plotter only supports one series, named ``hops``, which it expects
        to have an ``individual`` data key containing the individual heavy
        output probabilities for each circuit in the experiment. Additional
        series will be ignored.
    """
[docs]
    @classmethod
    def expected_series_data_keys(cls) -> List[str]:
        """Returns the expected series data keys supported by this plotter.
        Data Keys:
            individual: Heavy-output probability fraction for each individual circuit
        """
        return ["individual"] 
[docs]
    @classmethod
    def expected_supplementary_data_keys(cls) -> List[str]:
        """Returns the expected figures data keys supported by this plotter.
        Data Keys:
            depth: The depth of the quantun volume circuits used in the experiment
        """
        return ["depth"] 
[docs]
    def set_supplementary_data(self, **data_kwargs):
        """Sets supplementary data for the plotter.
        Args:
            data_kwargs: See :meth:`expected_supplementary_data_keys` for the
                expected supplementary data keys.
        """
        # Hook method to capture the depth for inclusion in the plot title
        if "depth" in data_kwargs:
            self.set_figure_options(
                figure_title=(
                    f"Quantum Volume experiment for depth {data_kwargs['depth']}"
                    " - accumulative hop"
                ),
            )
        super().set_supplementary_data(**data_kwargs) 
    @classmethod
    def _default_figure_options(cls) -> Options:
        options = super()._default_figure_options()
        options.xlabel = "Number of Trials"
        options.ylabel = "Heavy Output Probability"
        options.figure_title = "Quantum Volume experiment - accumulative hop"
        options.series_params = {
            "hop": {"color": "gray", "symbol": "."},
            "threshold": {"color": "black", "linestyle": "dashed", "linewidth": 1},
            "hop_cumulative": {"color": "r"},
            "hop_twosigma": {"color": "lightgray"},
        }
        return options
    @classmethod
    def _default_options(cls) -> Options:
        options = super()._default_options()
        options.style["figsize"] = (6.4, 4.8)
        options.style["axis_label_size"] = 14
        options.style["symbol_size"] = 2
        return options
    def _plot_figure(self):
        (hops,) = self.data_for("hops", ["individual"])
        trials = np.arange(1, 1 + len(hops))
        hop_accumulative = np.cumsum(hops) / trials
        hop_twosigma = 2 * (hop_accumulative * (1 - hop_accumulative) / trials) ** 0.5
        self.drawer.line(
            trials,
            hop_accumulative,
            name="hop_cumulative",
            label="Cumulative HOP",
            legend=True,
        )
        self.drawer.hline(
            2 / 3,
            name="threshold",
            label="Threshold",
            legend=True,
        )
        self.drawer.scatter(
            trials,
            hops,
            name="hop",
            label="Individual HOP",
            legend=True,
            linewidth=1.5,
        )
        self.drawer.filled_y_area(
            trials,
            hop_accumulative - hop_twosigma,
            hop_accumulative + hop_twosigma,
            alpha=0.5,
            legend=True,
            name="hop_twosigma",
            label="2σ",
        )
        self.drawer.set_figure_options(
            ylim=(
                max(hop_accumulative[-1] - 4 * hop_twosigma[-1], 0),
                min(hop_accumulative[-1] + 4 * hop_twosigma[-1], 1),
            ),
        ) 
[docs]
class QuantumVolumeAnalysis(BaseAnalysis):
    r"""A class to analyze quantum volume experiments.
    # section: overview
        Calculate the quantum volume of the analysed system.
        The quantum volume is determined by the largest successful circuit depth.
        A depth is successful if it has `mean heavy-output probability` > 2/3 with confidence
        level > 0.977 (corresponding to z_value = 2), and at least 100 trials have been ran.
        we assume the error (standard deviation) of the heavy output probability is due to a
        binomial distribution. The standard deviation for binomial distribution is
        :math:`\sqrt{(np(1-p))}`, where :math:`n` is the number of trials and :math:`p`
        is the success probability.
    """
    @classmethod
    def _default_options(cls) -> Options:
        """Return default analysis options.
        Analysis Options:
            plot (bool): Set ``True`` to create figure for fit result.
            ax (AxesSubplot): Optional. A matplotlib axis object to draw.
            plotter (BasePlotter): Plotter object to use for figure generation.
        """
        options = super()._default_options()
        options.plot = True
        options.ax = None
        options.plotter = QuantumVolumePlotter(MplDrawer())
        return options
    def _run_analysis(self, experiment_data):
        data = experiment_data.data()
        num_trials = len(data)
        depth = None
        heavy_output_prob_exp = []
        for data_trial in data:
            trial_depth = data_trial["metadata"]["depth"]
            if depth is None:
                depth = trial_depth
            elif trial_depth != depth:
                raise AnalysisError("QuantumVolume circuits do not all have the same depth.")
            heavy_output = self._calc_ideal_heavy_output(
                data_trial["metadata"]["ideal_probabilities"], trial_depth
            )
            heavy_output_prob_exp.append(
                self._calc_exp_heavy_output_probability(data_trial, heavy_output)
            )
        hop_result, qv_result = self._calc_quantum_volume(heavy_output_prob_exp, depth, num_trials)
        if self.options.plot:
            self.options.plotter.set_series_data("hops", individual=hop_result.extra["HOPs"])
            self.options.plotter.set_supplementary_data(depth=hop_result.extra["depth"])
            figures = [self.options.plotter.figure()]
        else:
            figures = None
        return [hop_result, qv_result], figures
    @staticmethod
    def _calc_ideal_heavy_output(probabilities_vector, depth):
        """
        Calculate the bit strings of the heavy output for the ideal simulation
        Args:
            ideal_data (dict): the simulation result of the ideal circuit
        Returns:
             list: the bit strings of the heavy output
        """
        format_spec = f"{{0:0{depth}b}}"
        # Keys are bit strings and values are probabilities of observing those strings
        all_output_prob_ideal = {
            format_spec.format(b): float(np.real(probabilities_vector[b]))
            for b in range(2**depth)
        }
        median_probabilities = float(np.real(np.median(probabilities_vector)))
        heavy_strings = list(
            filter(
                lambda x: all_output_prob_ideal[x] > median_probabilities,
                list(all_output_prob_ideal.keys()),
            )
        )
        return heavy_strings
    @staticmethod
    def _calc_exp_heavy_output_probability(data, heavy_outputs):
        """
        Calculate the probability of measuring heavy output string in the data
        Args:
            data (dict): the result of the circuit execution
            heavy_outputs (list): the bit strings of the heavy output from the ideal simulation
        Returns:
            int: heavy output probability
        """
        circ_shots = sum(data["counts"].values())
        # Calculate the number of heavy output counts in the experiment
        heavy_output_counts = sum(data["counts"].get(value, 0) for value in heavy_outputs)
        # Calculate the experimental heavy output probability
        return heavy_output_counts / circ_shots
    @staticmethod
    def _calc_z_value(mean, sigma):
        """Calculate z value using mean and sigma.
        Args:
            mean (float): mean
            sigma (float): standard deviation
        Returns:
            float: z_value in standard normal distribution.
        """
        if sigma == 0:
            # Assign a small value for sigma if sigma = 0
            sigma = 1e-10
            warnings.warn("Standard deviation sigma should not be zero.")
        z_value = (mean - 2 / 3) / sigma
        return z_value
    @staticmethod
    def _calc_confidence_level(z_value):
        """Calculate confidence level using z value.
        Accumulative probability for standard normal distribution
        in [-z, +infinity] is 1/2 (1 + erf(z/sqrt(2))),
        where z = (X - mu)/sigma = (hmean - 2/3)/sigma
        Args:
            z_value (float): z value in in standard normal distribution.
        Returns:
            float: confidence level in decimal (not percentage).
        """
        confidence_level = 0.5 * (1 + math.erf(z_value / 2**0.5))
        return confidence_level
    def _calc_quantum_volume(self, heavy_output_prob_exp, depth, trials):
        """
        Calc the quantum volume of the analysed system.
        quantum volume is determined by the largest successful depth.
        A depth is successful if it has `mean heavy-output probability` > 2/3 with confidence
        level > 0.977 (corresponding to z_value = 2), and at least 100 trials have been ran.
        we assume the error (standard deviation) of the heavy output probability is due to a
        binomial distribution. standard deviation for binomial distribution is sqrt(np(1-p)),
        where n is the number of trials and p is the success probability.
        Returns:
            dict: quantum volume calculations -
            the quantum volume,
            whether the results passed the threshold,
            the confidence of the result,
            the heavy output probability for each trial,
            the mean heavy-output probability,
            the error of the heavy output probability,
            the depth of the circuit,
            the number of trials ran
        """
        quantum_volume = 1
        success = False
        mean_hop = np.mean(heavy_output_prob_exp)
        sigma_hop = (mean_hop * ((1.0 - mean_hop) / trials)) ** 0.5
        z = 2
        threshold = 2 / 3 + z * sigma_hop
        z_value = self._calc_z_value(mean_hop, sigma_hop)
        confidence_level = self._calc_confidence_level(z_value)
        if confidence_level > 0.977:
            quality = "good"
        else:
            quality = "bad"
        # Must have at least 100 trials
        if trials < 100:
            warnings.warn("Must use at least 100 trials to consider Quantum Volume as successful.")
        if mean_hop > threshold and trials >= 100:
            quantum_volume = 2**depth
            success = True
        hop_result = AnalysisResultData(
            "mean_HOP",
            value=uncertainties.ufloat(nominal_value=mean_hop, std_dev=sigma_hop),
            quality=quality,
            extra={
                "HOPs": heavy_output_prob_exp,
                "two_sigma": 2 * sigma_hop,
                "depth": depth,
                "trials": trials,
            },
        )
        qv_result = AnalysisResultData(
            "quantum_volume",
            value=quantum_volume,
            quality=quality,
            extra={
                "success": success,
                "confidence": confidence_level,
                "depth": depth,
                "trials": trials,
            },
        )
        return hop_result, qv_result