Note
This is the documentation for the current state of the development branch of Qiskit Experiments. The documentation or APIs here can change prior to being released.
MitigatedProcessTomography¶
- class MitigatedProcessTomography(circuit, backend=None, physical_qubits=None, measurement_indices=None, preparation_indices=None, basis_indices=None, conditional_circuit_clbits=False, analysis='default')[source]¶
A batched experiment to characterize readout error then perform process tomography for doing readout error mitigated process tomography.
Overview
Readout error mitigated Quantum process tomography is a batch experiment consisting of a
LocalReadoutError
characterization experiments, followed by aProcessTomography
experiment.During analysis the assignment matrix local readout error model is used to automatically construct a noisy Pauli measurement basis for performing readout error mitigated process tomography fitting.
Analysis class reference
Experiment options
These options can be set by the
set_experiment_options()
method.- Options
Defined in the class
BatchExperiment
:separate_jobs (Boolean)
Default value:False
Whether to route different sub-experiments to different jobs.
Defined in the class
BaseExperiment
:max_circuits (Optional[int])
Default value:None
The maximum number of circuits per job when running an experiment on a backend.
Note
Performing readout error mitigation full process tomography on an N-qubit circuit requires running 2 readout error characterization circuits and
measurement circuits using the Pauli preparation and measurement bases.See also
Initialization
Initialize a quantum process tomography experiment.
- Parameters:
circuit (
Union
[QuantumCircuit
,Instruction
,BaseOperator
]) – the quantum process circuit. If not a quantum circuit it must be a class that can be appended to a quantum circuit.backend (
Optional
[Backend
]) – The backend to run the experiment on.physical_qubits (
Optional
[Sequence
[int
]]) – Optional, the physical qubits for the initial state circuit. If None this will be qubits [0, N) for an N-qubit circuit.measurement_indices (
Optional
[Sequence
[int
]]) – Optional, the physical_qubits indices to be measured. If None all circuit physical qubits will be measured.preparation_indices (
Optional
[Sequence
[int
]]) – Optional, the physical_qubits indices to be prepared. If None all circuit physical qubits will be prepared.basis_indices (
Optional
[Iterable
[Tuple
[List
[int
],List
[int
]]]]) – Optional, a list of basis indices for generating partial tomography measurement data. Each item should be given as a pair of lists of preparation and measurement basis configurations([p[0], p[1], ..], m[0], m[1], ...])
, wherep[i]
is the preparation basis index, andm[i]
is the measurement basis index for qubit-i. If not specified full tomography for all indices of the preparation and measurement bases will be performed.conditional_circuit_clbits (
Union
[bool
,Sequence
[int
],Sequence
[Clbit
]]) – Optional, the clbits in the source circuit to be conditioned on when reconstructing the state. If True all circuit clbits will be conditioned on. Enabling this will return a list of reconstrated state components conditional on the values of these clbit values.analysis (
Union
[BaseAnalysis
,None
,str
]) – Optional, a custom tomography analysis instance to use. If"default"
ProcessTomographyAnalysis
will be used. If None no analysis instance will be set.
Attributes
Return the analysis instance for the experiment
Return the backend for the experiment
Return the options for the experiment.
Return experiment type.
Return the number of sub experiments
Return the number of qubits for the experiment.
Return the device qubits for the experiment.
Return options values for the experiment
run()
method.Return the transpiler options for the
run()
method.Methods
Return a list of experiment circuits.
Return the component Experiment object.
Return the config dataclass for this experiment
Return a copy of the experiment
Initialize an experiment from experiment config
MitigatedProcessTomography.run
([backend, ...])Run an experiment and perform analysis.
Set the experiment options.
Set options values for the experiment
run()
method.Set the transpiler options for
run()
method.