# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=invalid-name, inconsistent-return-statements
"""Functions for performing the Rotating Wave Approximation
on Model classes."""
from typing import List, Optional, Union
import numpy as np
from qiskit_dynamics.models import (
BaseGeneratorModel,
GeneratorModel,
HamiltonianModel,
LindbladModel,
RotatingFrame,
)
from qiskit_dynamics.signals import SignalSum, Signal, SignalList
from qiskit_dynamics.array import Array
from qiskit_dynamics.type_utils import to_array
[docs]
def rotating_wave_approximation(
model: BaseGeneratorModel, cutoff_freq: float, return_signal_map: Optional[bool] = False
) -> BaseGeneratorModel:
r"""Construct a new model by performing the rotating wave approximation with a given cutoff
frequency. The outputs of this function can be used in JAX-transformable functions, however this
function itself cannot (see below).
Performs elementwise rotating wave approximation (RWA) with cutoff frequency ``cutoff_freq`` on
each operator in a model, returning a new model. The new model contains a modified list of
signal coefficients, and setting the optional argument ``return_signal_map=True`` results in
the additional return of the function ``f`` which maps the signals of the input model to those
of the output RWA model, such that the code blocks:
.. code-block:: python
model.signals = new_signals
rwa_model = rotating_wave_approximation(model, cutoff_freq)
and
.. code-block:: python
rwa_model, f = rotating_wave_approximation(model, cutoff_freq, return_signal_map=True)
rwa_model.signals = f(new_signals)
result in an ``rwa_model`` with the same updated signals.
.. note::
The ``rotating_wave_approximation`` function itself cannot be included in a function
to-be JAX-transformed, however the resulting model and ``signal_map`` can. For example,
the following function is **not** JAX-transformable:
.. code-block:: python
def function_with_rwa(t):
operators = ...
signals = ...
model = GeneratorModel(operators=operators, signals=signals)
rwa_model = rotating_wave_approximation(model, cutoff_freq)
return rwa_model(t)
Whereas, defining:
.. code-block:: python
rwa_model, signal_map = rotating_wave_approximation(model,
cutoff_freq,
return_signal_map=True)
The following function **is** JAX-transformable:
.. code-block:: python
def jax_transformable_func(t):
rwa_model_copy = rwa_model.copy()
rwa_model_copy.signals = signal_map(new_signals)
return rwa_model_copy(t)
In this way, the outputs of ``rotating_wave_approximation`` can be used in JAX-transformable
functions, however ``rotating_wave_approximation`` itself cannot.
We now describe the formalism. When considering :math:`s_i(t) e^{-tF}G_ie^{tF}`, in the basis in
which :math:`F` is diagonal, the :math:`(j, k)` element of :math:`G_i` has effective frequency
:math:`\tilde\nu_{ijk}^\pm = \pm\nu_i + Im[-d_j+d_k]/2\pi`, where the :math:`\pm\nu_i` comes
from expressing :math:`s_i(t) = Re[a_i(t)e^{2\pi i\nu_i t}] = a_i(t)e^{i(2\pi\nu_i t+\phi_i)}/2
+ c.c.` and the other term comes from the rotating frame. Define :math:`G_i^\pm` the matrix
whose entries :math:`(G_i^\pm)_{jk}` are the entries of :math:`G_i` s.t.
:math:`|\nu_{ijk}^\pm|<\nu_*` for some cutoff frequency :math:`\nu_*`. Then, after the RWA, we
may write
.. math::
s_i(t)G_i \to G_i^+ a_ie^{i(2\pi \nu_i t+\phi_i)}/2
+ G_i^- \overline{a_i}e^{-i(2\pi \nu_i t+\phi_i)}/2.
When we regroup these to use only the real components of the signal, we find that
.. math::
s_i(t)G_i \to s_i(t)(G_i^+ + G_i^-)/2 + s_i'(t)(iG_i^+-iG_i^-)
where :math:`s_i'(t)` is a signal with the same frequency and amplitude as :math:`s_i`, but with
a phase shift of :math:`\phi_i - \pi/2`.
Args:
model: The model to approximate.
cutoff_freq: The cutoff frequency for the approximation.
return_signal_map: Whether to also return the function for mapping pre-RWA signals to
post-RWA signals.
Returns:
:class:`GeneratorModel` with twice as many terms, and, if ``return_signal_map``,
also the function ``f``.
Raises:
ValueError: If the model has no signals.
"""
n = model.dim
frame_freqs = None
if model.rotating_frame is None or model.rotating_frame.frame_diag is None:
frame_freqs = np.zeros((n, n), dtype=complex)
else:
diag = model.rotating_frame.frame_diag
diff_matrix = np.broadcast_to(diag, (n, n)) - np.broadcast_to(diag, (n, n)).T
frame_freqs = diff_matrix.imag / (2 * np.pi)
if model.rotating_frame.frame_diag is not None:
frame_shift = np.diag(model.rotating_frame.frame_diag)
if isinstance(model, (HamiltonianModel, LindbladModel)):
frame_shift = 1j * frame_shift
else:
frame_shift = np.zeros((n, n), dtype=complex)
if isinstance(model, GeneratorModel):
if model.signals is None and model.operators is not None:
raise ValueError("Model must have nontrivial signals to perform the RWA.")
cur_drift = to_array(model._get_static_operator(True))
if cur_drift is not None:
cur_drift = cur_drift + frame_shift
rwa_drift = cur_drift * (abs(frame_freqs) < cutoff_freq).astype(int)
rwa_drift = model.rotating_frame.operator_out_of_frame_basis(rwa_drift)
else:
rwa_drift = None
rwa_operators = get_rwa_operators(
to_array(model._get_operators(True)),
model.signals,
model.rotating_frame,
frame_freqs,
cutoff_freq,
)
rwa_signals = get_rwa_signals(model.signals)
# works for both GeneratorModel and HamiltonianModel
rwa_model = model.__class__(
static_operator=rwa_drift,
operators=rwa_operators,
signals=rwa_signals,
rotating_frame=model.rotating_frame,
in_frame_basis=model.in_frame_basis,
evaluation_mode=model.evaluation_mode,
)
if return_signal_map:
return rwa_model, get_rwa_signals
return rwa_model
elif isinstance(model, LindbladModel):
if model.signals[0] is None and model.hamiltonian_operators is not None:
raise ValueError("Model must have nontrivial Hamiltonian signals to perform the RWA.")
if model.signals[1] is None and model.dissipator_operators is not None:
raise ValueError("Model must have nontrivial dissipator signals to perform the RWA.")
# static hamiltonian part
cur_drift = to_array(model._get_static_hamiltonian(True)) + frame_shift
rwa_drift = cur_drift * (abs(frame_freqs) < cutoff_freq).astype(int)
rwa_drift = model.rotating_frame.operator_out_of_frame_basis(rwa_drift)
# static dissipator part
cur_static_dis = to_array(model._get_static_dissipators(in_frame_basis=True))
rwa_static_dis = None
if cur_static_dis is not None:
rwa_static_dis = []
for op in cur_static_dis:
op = Array(op)
rwa_op = op * (abs(frame_freqs) < cutoff_freq).astype(int)
rwa_op = model.rotating_frame.operator_out_of_frame_basis(rwa_op)
rwa_static_dis.append(rwa_op)
cur_ham_ops = to_array(model._get_hamiltonian_operators(in_frame_basis=True))
cur_dis_ops = to_array(model._get_dissipator_operators(in_frame_basis=True))
cur_ham_sig, cur_dis_sig = model.signals
rwa_ham_ops = get_rwa_operators(
cur_ham_ops, cur_ham_sig, model.rotating_frame, frame_freqs, cutoff_freq
)
rwa_ham_sig = get_rwa_signals(cur_ham_sig)
rwa_dis_ops = get_rwa_operators(
cur_dis_ops, cur_dis_sig, model.rotating_frame, frame_freqs, cutoff_freq
)
rwa_dis_sig = get_rwa_signals(cur_dis_sig)
rwa_model = LindbladModel(
static_hamiltonian=rwa_drift,
hamiltonian_operators=rwa_ham_ops,
hamiltonian_signals=rwa_ham_sig,
static_dissipators=rwa_static_dis,
dissipator_operators=rwa_dis_ops,
dissipator_signals=rwa_dis_sig,
rotating_frame=model.rotating_frame,
in_frame_basis=model.in_frame_basis,
evaluation_mode=model.evaluation_mode,
)
if return_signal_map:
signal_translator = lambda a: (get_rwa_signals(a[0]), get_rwa_signals(a[1]))
return rwa_model, signal_translator
return rwa_model
def get_rwa_operators(
current_ops: Array,
current_sigs: SignalList,
rotating_frame: RotatingFrame,
frame_freqs: Array,
cutoff_freq: float,
):
r"""Given a set of operators as a ``(k,n,n)`` array, a set of frequencies
:math:`\operatorname{frame_freqs}_{jk} = \operatorname{Im}[-d_j+d_k]` where :math:`d_i` the
:math:`i^{th}` eigenlvalue of the frame operator :math:`F`, the current signals of a model, and
a cutoff frequency, returns the new operators and signals that should be passed to create a new
Model class after the RWA.
Args:
current_ops: The current operator list, a ``(k,n,n)`` array.
current_sigs: ``(k,)`` length :class:`SignalList`.
rotating_frame: The current :class:`~RotatingFrame` object of the pre-RWA model
frame_freqs: The effective frequencies of different matrix elements due to the conjugation
by :math:`e^{\pm Ft}` in the rotating frame.
cutoff_freq: The maximum frequency allowed under the RWA.
Returns:
SignaLList: ``(2k,n,n)`` array of new operators post RWA.
"""
if current_ops is None:
return None
current_sigs = current_sigs.flatten()
carrier_freqs = np.zeros(len(current_ops))
for i, sig_sum in enumerate(current_sigs.components):
sig = sig_sum.components[0]
carrier_freqs[i] = sig.carrier_freq
num_components = len(carrier_freqs)
n = current_ops[0].shape[-1]
frame_freqs = np.broadcast_to(frame_freqs, (num_components, n, n))
carrier_freqs = carrier_freqs.reshape((num_components, 1, 1))
pos_pass = np.abs(carrier_freqs + frame_freqs) < cutoff_freq
pos_terms = current_ops * pos_pass.astype(int) # G_i^+
neg_pass = np.abs(-carrier_freqs + frame_freqs) < cutoff_freq
neg_terms = current_ops * neg_pass.astype(int) # G_i^-
real_component = pos_terms / 2 + neg_terms / 2
imag_component = 1j * pos_terms / 2 - 1j * neg_terms / 2
return rotating_frame.operator_out_of_frame_basis(
np.append(real_component, imag_component, axis=0)
)
def get_rwa_signals(curr_signal_list: Union[List[Signal], SignalList]):
"""Helper function that converts pre-RWA signals to post-RWA signals.
Args:
curr_signal_list: The pre-RWA signals.
Returns:
The post-RWA signals.
"""
if curr_signal_list is None:
return curr_signal_list
real_signal_components = []
imag_signal_components = []
if not isinstance(curr_signal_list, SignalList):
curr_signal_list = SignalList(curr_signal_list)
curr_signal_list = curr_signal_list.flatten()
for sig_sum in curr_signal_list.components:
sig = sig_sum.components[0]
real_signal_components.append(sig)
imag_signal_components.append(
SignalSum(Signal(sig.envelope, sig.carrier_freq, sig.phase - np.pi / 2))
)
return SignalList(real_signal_components + imag_signal_components)