How to simulate entanglement forging¶
In this guide, we show how to simulate entanglement forging.
Build a molecule¶
We’ll use, as an example, a water molecule at equilibrium bond length in an active space of 6 orbitals and 8 electrons.
[1]:
import math
import pyscf
import pyscf.mcscf
import ffsim
# Build a water molecule
radius_1 = 0.958
radius_2 = 0.958
bond_angle_deg = 104.478
h1_x = radius_1
h2_x = radius_2 * math.cos(math.pi / 180 * bond_angle_deg)
h2_y = radius_2 * math.sin(math.pi / 180 * bond_angle_deg)
mol = pyscf.gto.Mole()
mol.build(
atom=[
["O", (0, 0, 0)],
["H", (h1_x, 0, 0)],
["H", (h2_x, h2_y, 0)],
],
basis="sto-6g",
symmetry="c2v",
)
# Define active space
active_space = range(1, mol.nao_nr())
# Get molecular data and molecular Hamiltonian
scf = pyscf.scf.RHF(mol).run()
mol_data = ffsim.MolecularData.from_scf(scf, active_space=active_space)
norb, nelec = mol_data.norb, mol_data.nelec
mol_hamiltonian = mol_data.hamiltonian
# Compute the FCI energy
mol_data.run_fci()
print(f"norb = {norb}")
print(f"nelec = {nelec}")
converged SCF energy = -75.6787887956297
Parsing /tmp/tmplxf86ru3
converged SCF energy = -75.6787887956313
CASCI E = -75.7288249991515 E(CI) = -23.6332495815006 S^2 = 0.0000000
norb = 6
nelec = (4, 4)
Overwritten attributes get_hcore get_ovlp of <class 'pyscf.scf.hf.RHF'>
/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.13/site-packages/pyscf/gto/mole.py:1293: UserWarning: Function mol.dumps drops attribute energy_nuc because it is not JSON-serializable
warnings.warn(msg)
/home/runner/work/ffsim/ffsim/.tox/docs/lib/python3.13/site-packages/pyscf/gto/mole.py:1293: UserWarning: Function mol.dumps drops attribute intor_symmetric because it is not JSON-serializable
warnings.warn(msg)
Initialize ansatz operator¶
For our ansatz, we’ll use a dense “brickwork” pattern of “hop gates.” This is implemented in ffsim as the HopGateAnsatzOperator class.
[2]:
import numpy as np
# Define the pattern of two-qubit gates to use
def brickwork(norb: int, n_layers: int):
for i in range(n_layers):
for j in range(i % 2, norb - 1, 2):
yield (j, j + 1)
n_layers = norb
interaction_pairs = list(brickwork(norb, n_layers))
# Generate random initial parameters
rng = np.random.default_rng(1234)
thetas = rng.normal(scale=1e-1, size=len(interaction_pairs))
# Construct the ansatz operator
operator = ffsim.HopGateAnsatzOperator(norb, interaction_pairs, thetas)
Choose reference occupations¶
The next step is to choose the reference occupations to use. We’ll use 3 reference occupations, and these will be constructed using the same occupations for the alpha and beta spin orbitals.
[3]:
# Specify the reference occupations as "spatial" since we'll use the same occupations
# for both alpha and beta spin orbitals
reference_occupations_spatial = [(0, 1, 2, 3), (1, 2, 3, 4), (0, 1, 2, 4)]
# Construct the full reference occupations, including alpha and beta parts
reference_occupations = list(
zip(reference_occupations_spatial, reference_occupations_spatial)
)
Compute energy¶
The entanglement forging energy is computed using the multireference_state_prod function. The prod
suffix refers to the fact that our ansatz operator is a product operator which acts on the alpha and beta spin sectors independently. In this case, we choose to use the same ansatz operator for both spin sectors, so we pass a tuple (operator, operator)
of the same ansatz operator repeated twice.
[4]:
# Compute the energy of the ansatz
energy, _ = ffsim.multireference_state_prod(
mol_hamiltonian, (operator, operator), reference_occupations, norb=norb, nelec=nelec
)
print(f"Energy at initialialization: {energy}")
Energy at initialialization: -75.6779440365972
Optimize energy¶
Now that we know how to initialize an ansatz operator and compute its energy, we can put this logic in a function and minimize the function. Here, we minimizze the function using Scipy’s optimization module.
[5]:
import scipy.optimize
def fun(x):
# Initialize the ansatz operator from the parameter vector
operator = ffsim.HopGateAnsatzOperator(norb, interaction_pairs, x)
# Compute energy
energy, _ = ffsim.multireference_state_prod(
mol_hamiltonian,
(operator, operator),
reference_occupations,
norb=norb,
nelec=nelec,
)
return energy
result = scipy.optimize.minimize(
fun, x0=operator.thetas, method="L-BFGS-B", options=dict(maxfun=100)
)
print(f"Number of parameters: {len(result.x)}")
print(result)
Number of parameters: 15
message: STOP: TOTAL NO. OF F,G EVALUATIONS EXCEEDS LIMIT
success: False
status: 1
fun: -75.68381553497726
x: [-1.603e-01 6.417e-03 ... 5.747e-02 -1.005e-01]
nit: 3
jac: [ 2.132e-04 1.080e-04 ... -4.744e-03 7.452e-03]
nfev: 112
njev: 7
hess_inv: <15x15 LbfgsInvHessProduct with dtype=float64>