Quantum State Tomography

Quantum tomography is an experimental procedure to reconstruct a description of part of a quantum system from the measurement outcomes of a specific set of experiments. In particular, quantum state tomography reconstructs the density matrix of a quantum state by preparing the state many times and measuring them in a tomographically complete basis of measurement operators.

Note

This tutorial requires the qiskit-aer and qiskit-ibm-runtime packages to run simulations. You can install them with python -m pip install qiskit-aer qiskit-ibm-runtime.

We first initialize a simulator to run the experiments on.

from qiskit_aer import AerSimulator
from qiskit_ibm_runtime.fake_provider import FakePerth

backend = AerSimulator.from_backend(FakePerth())

To run a state tomography experiment, we initialize the experiment with a circuit to prepare the state to be measured. We can also pass in an Operator or a Statevector to describe the preparation circuit.

import qiskit
from qiskit_experiments.framework import ParallelExperiment
from qiskit_experiments.library import StateTomography

# GHZ State preparation circuit
nq = 2
qc_ghz = qiskit.QuantumCircuit(nq)
qc_ghz.h(0)
qc_ghz.s(0)
for i in range(1, nq):
    qc_ghz.cx(0, i)

# QST Experiment
qstexp1 = StateTomography(qc_ghz)
qstdata1 = qstexp1.run(backend, seed_simulation=100).block_for_results()

# Print results
display(qstdata1.analysis_results(dataframe=True))
name experiment components value quality backend run_time trace eigvals raw_eigvals rescaled_psd fitter_metadata conditional_probability positive
22db9e0b state StateTomography [Q0, Q1] DensityMatrix([[ 0.46402995+0.j , 0.01... None aer_simulator_from(fake_perth) None 1.0 [0.9232184110521847, 0.040218685699838067, 0.0... [0.9232184110521847, 0.040218685699838067, 0.0... False {'fitter': 'linear_inversion', 'fitter_time': ... 1.0 True
4a4345a2 state_fidelity StateTomography [Q0, Q1] 0.922852 None aer_simulator_from(fake_perth) None None None None None None None None
834aab80 positive StateTomography [Q0, Q1] True None aer_simulator_from(fake_perth) None None None None None None None None

Tomography Results

The main result for tomography is the fitted state, which is stored as a DensityMatrix object:

state_result = qstdata1.analysis_results("state", dataframe=True).iloc[0]
print(state_result.value)
DensityMatrix([[ 0.46402995+0.j        ,  0.01009115+0.00146484j,
                 0.00585938-0.00048828j,  0.00341797-0.44726562j],
               [ 0.01009115-0.00146484j,  0.02099609+0.j        ,
                -0.00634766+0.00390625j,  0.00683594-0.00048828j],
               [ 0.00585938+0.00048828j, -0.00634766-0.00390625j,
                 0.02783203+0.j        , -0.01041667-0.00537109j],
               [ 0.00341797+0.44726562j,  0.00683594+0.00048828j,
                -0.01041667+0.00537109j,  0.48714193+0.j        ]],
              dims=(2, 2))

We can also visualize the density matrix:

from qiskit.visualization import plot_state_city
state = qstdata1.analysis_results("state", dataframe=True).iloc[0].value
plot_state_city(state, title='Density Matrix')
../../_images/state_tomography_3_0.png

The state fidelity of the fitted state with the ideal state prepared by the input circuit is stored in the "state_fidelity" result field. Note that if the input circuit contained any measurements the ideal state cannot be automatically generated and this field will be set to None.

fid_result = qstdata1.analysis_results("state_fidelity", dataframe=True).iloc[0]
print("State Fidelity = {:.5f}".format(fid_result.value))
State Fidelity = 0.92285

Additional state metadata

Additional data is stored in the tomography under additional fields. This includes

  • eigvals: the eigenvalues of the fitted state

  • trace: the trace of the fitted state

  • positive: Whether the eigenvalues are all non-negative

If trace rescaling was performed this dictionary will also contain a raw_trace field containing the trace before rescaling. Futhermore, if the state was rescaled to be positive or trace 1 an additional field raw_eigvals will contain the state eigenvalues before rescaling was performed.

for col in ["eigvals", "trace", "positive"]:
    print(f"{col}: {state_result[col]}")
eigvals: [0.92321841 0.04021869 0.02540878 0.01115412]
trace: 1.0000000000000016
positive: True

To see the effect of rescaling, we can perform a “bad” fit with very low counts:

# QST Experiment
bad_data = qstexp1.run(backend, shots=10, seed_simulation=100).block_for_results()
bad_state_result = bad_data.analysis_results("state", dataframe=True).iloc[0]

# Print result
for key, val in bad_state_result.items():
    print(f"{key}: {val}")
name: state
experiment: StateTomography
components: [<Qubit(Q0)>, <Qubit(Q1)>]
value: DensityMatrix([[ 0.37627465+0.00000000e+00j,  0.02157191+5.64191167e-02j,
                -0.03899897+1.54252344e-03j,  0.05005565-3.18700586e-01j],
               [ 0.02157191-5.64191167e-02j,  0.06820753+0.00000000e+00j,
                -0.07860112+1.95737053e-02j,  0.05476927-1.61358157e-02j],
               [-0.03899897-1.54252344e-03j, -0.07860112-1.95737053e-02j,
                 0.10749896-1.73472348e-18j, -0.13474549-3.02879271e-03j],
               [ 0.05005565+3.18700586e-01j,  0.05476927+1.61358157e-02j,
                -0.13474549+3.02879271e-03j,  0.44801885+0.00000000e+00j]],
              dims=(2, 2))
quality: None
backend: aer_simulator_from(fake_perth)
run_time: None
trace: 1.0000000000000049
eigvals: [0.75785678 0.24214322 0.         0.        ]
raw_eigvals: [ 0.87957154  0.36385799  0.02338879 -0.26681831]
rescaled_psd: True
fitter_metadata: {'fitter': 'linear_inversion', 'fitter_time': 0.0030813217163085938}
conditional_probability: 1.0
positive: True

Tomography Fitters

The default fitters is linear_inversion, which reconstructs the state using dual basis of the tomography basis. This will typically result in a non-positive reconstructed state. This state is rescaled to be positive-semidefinite (PSD) by computing its eigen-decomposition and rescaling its eigenvalues using the approach from Ref. [1].

There are several other fitters are included (See API documentation for details). For example, if cvxpy is installed we can use the cvxpy_gaussian_lstsq() fitter, which allows constraining the fit to be PSD without requiring rescaling.

try:
    import cvxpy

    # Set analysis option for cvxpy fitter
    qstexp1.analysis.set_options(fitter='cvxpy_gaussian_lstsq')

    # Re-run experiment
    qstdata2 = qstexp1.run(backend, seed_simulation=100).block_for_results()

    state_result2 = qstdata2.analysis_results("state", dataframe=True).iloc[0]
    for key, val in state_result2.items():
        print(f"{key}: {val}")

except ModuleNotFoundError:
    print("CVXPY is not installed")
name: state
experiment: StateTomography
components: [<Qubit(Q0)>, <Qubit(Q1)>]
value: DensityMatrix([[ 0.47445494+0.00000000e+00j,  0.00721187-1.63137999e-03j,
                 0.0016082 +4.44610456e-03j,  0.00382841-4.51088011e-01j],
               [ 0.00721187+1.63137999e-03j,  0.02641216+0.00000000e+00j,
                 0.00354996+1.66223627e-05j, -0.00527202-1.59171273e-03j],
               [ 0.0016082 -4.44610456e-03j,  0.00354996-1.66223627e-05j,
                 0.02909059+0.00000000e+00j, -0.01475184+1.64753599e-03j],
               [ 0.00382841+4.51088011e-01j, -0.00527202+1.59171273e-03j,
                -0.01475184-1.64753599e-03j,  0.47004231+0.00000000e+00j]],
              dims=(2, 2))
quality: None
backend: aer_simulator_from(fake_perth)
run_time: None
trace: 0.9999999996596667
eigvals: [0.92361404 0.03735279 0.02409327 0.01493991]
raw_eigvals: [0.92361404 0.03735279 0.02409327 0.01493991]
rescaled_psd: False
fitter_metadata: {'fitter': 'cvxpy_gaussian_lstsq', 'cvxpy_solver': 'SCS', 'cvxpy_status': ['optimal'], 'psd_constraint': True, 'trace_preserving': True, 'fitter_time': 0.03154611587524414}
conditional_probability: 1.0
positive: True

Parallel Tomography Experiment

We can also use the ParallelExperiment class to run subsystem tomography on multiple qubits in parallel.

For example if we want to perform 1-qubit QST on several qubits at once:

from math import pi
num_qubits = 5
gates = [qiskit.circuit.library.RXGate(i * pi / (num_qubits - 1))
         for i in range(num_qubits)]

subexps = [
    StateTomography(gate, physical_qubits=(i,))
    for i, gate in enumerate(gates)
]
parexp = ParallelExperiment(subexps)
pardata = parexp.run(backend, seed_simulation=100).block_for_results()

display(pardata.analysis_results(dataframe=True))
name experiment components value quality backend run_time trace eigvals raw_eigvals rescaled_psd fitter_metadata conditional_probability positive
2aa691b6 state StateTomography [Q0] DensityMatrix([[0.97460938+0.j , 0.0078... None aer_simulator_from(fake_perth) None 1.0 [0.974677689270737, 0.02532231072926413] [0.974677689270737, 0.02532231072926413] False {'fitter': 'linear_inversion', 'fitter_time': ... 1.0 True
32b73955 state_fidelity StateTomography [Q0] 0.974609 None aer_simulator_from(fake_perth) None None None None None None None None
14d21b87 positive StateTomography [Q0] True None aer_simulator_from(fake_perth) None None None None None None None None
5bba5833 state StateTomography [Q1] DensityMatrix([[0.84277344+0.j , 0.0214... None aer_simulator_from(fake_perth) None 1.0 [0.9777027933781316, 0.022297206621869486] [0.9777027933781316, 0.022297206621869486] False {'fitter': 'linear_inversion', 'fitter_time': ... 1.0 True
3cb4395f state_fidelity StateTomography [Q1] 0.977159 None aer_simulator_from(fake_perth) None None None None None None None None
7e2c3047 positive StateTomography [Q1] True None aer_simulator_from(fake_perth) None None None None None None None None
3e4c2338 state StateTomography [Q2] DensityMatrix([[ 0.49707031+0.j , -0.01... None aer_simulator_from(fake_perth) None 1.0 [0.9660301135897351, 0.033969886410265826] [0.9660301135897351, 0.033969886410265826] False {'fitter': 'linear_inversion', 'fitter_time': ... 1.0 True
6c32ef14 state_fidelity StateTomography [Q2] 0.96582 None aer_simulator_from(fake_perth) None None None None None None None None
670033c1 positive StateTomography [Q2] True None aer_simulator_from(fake_perth) None None None None None None None None
c8dacaa3 state StateTomography [Q3] DensityMatrix([[ 0.15917969+0.j , -0.01... None aer_simulator_from(fake_perth) None 1.0 [0.9726219480063372, 0.027378051993663707] [0.9726219480063372, 0.027378051993663707] False {'fitter': 'linear_inversion', 'fitter_time': ... 1.0 True
8d00b9d5 state_fidelity StateTomography [Q3] 0.972325 None aer_simulator_from(fake_perth) None None None None None None None None
e522f416 positive StateTomography [Q3] True None aer_simulator_from(fake_perth) None None None None None None None None
ca3668bf state StateTomography [Q4] DensityMatrix([[ 0.04492188+0.j , -0.01367... None aer_simulator_from(fake_perth) None 1.0 [0.9563546674676742, 0.043645332532327025] [0.9563546674676742, 0.043645332532327025] False {'fitter': 'linear_inversion', 'fitter_time': ... 1.0 True
81b5faa3 state_fidelity StateTomography [Q4] 0.955078 None aer_simulator_from(fake_perth) None None None None None None None None
3ba8d890 positive StateTomography [Q4] True None aer_simulator_from(fake_perth) None None None None None None None None

View experiment analysis results for one component:

results = pardata.analysis_results(dataframe=True)
display(results[results.components.apply(lambda x: x == ["Q0"])])
name experiment components value quality backend run_time trace eigvals raw_eigvals rescaled_psd fitter_metadata conditional_probability positive
2aa691b6 state StateTomography [Q0] DensityMatrix([[0.97460938+0.j , 0.0078... None aer_simulator_from(fake_perth) None 1.0 [0.974677689270737, 0.02532231072926413] [0.974677689270737, 0.02532231072926413] False {'fitter': 'linear_inversion', 'fitter_time': ... 1.0 True
32b73955 state_fidelity StateTomography [Q0] 0.974609 None aer_simulator_from(fake_perth) None None None None None None None None
14d21b87 positive StateTomography [Q0] True None aer_simulator_from(fake_perth) None None None None None None None None

References

See also